专题18一元二次方程(2)-2020年全国中考数学真题分项汇编(第02期全国通用)(解析版)(,)(,).doc
-
资源ID:4850140
资源大小:5.86MB
全文页数:109页
- 资源格式: DOC
下载积分:10金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
专题18一元二次方程(2)-2020年全国中考数学真题分项汇编(第02期全国通用)(解析版)(,)(,).doc
专题18一元二次方程(2)(全国一年)学校:_姓名:_班级:_考号:_一、单选题1(2020·新疆中考真题)下列关于x的方程有两个不相等实数根的是( )ABCD【答案】D【解析】【分析】利用逐一计算,根据一元二次方程根的判别式逐一判断即可得到答案【详解】解:由所以方程有两个相等的实数根,故A不符合题意,由所以方程没有实数根,故B不符合题意,由所以方程没有实数根,故C不符合题意,由所以方程有两个不相等的实数根,故D符合题意,故选:D【点睛】本题考查的是一元二次方程的根的判别式,掌握根的判别式是解题的关键2(2020·贵州遵义?中考真题)如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则可列方程为()A(302x)(40x)600B(30x)(40x)600C(30x)(402x)600D(302x)(402x)600【答案】D【解析】【分析】设剪去小正方形的边长是xcm,则纸盒底面的长为(402x)cm,宽为(302x)cm,根据长方形的面积公式结合纸盒的底面积是600cm2,即可得出关于x的一元二次方程,此题得解【详解】解:设剪去小正方形的边长是xcm,则纸盒底面的长为(402x)cm,宽为(302x)cm,根据题意得:(402x)(302x)600故选:D【点睛】本题考查的是一元二次方程的应用,正确理解题意找到等量关系是解题的关键3(2020·四川攀枝花?中考真题)若关于的方程没有实数根,则的值可以为( )ABC0D1【答案】A【解析】【分析】根据关于x的方程没有实数根,判断出0,求出m的取值范围,再找出符合条件的m的值【详解】解:关于的方程没有实数根,=0,解得:,故选项中只有A选项满足,故选A.【点睛】本题考查了一元二次方程根的判别式,需要掌握一元二次方程没有实数根相当于判别式小于零.4(2020·山东泰安?中考真题)将一元二次方程化成(a,b为常数)的形式,则a,b的值分别是( )A,21B,11C4,21D,69【答案】A【解析】【分析】根据配方法步骤解题即可【详解】解:移项得,配方得,即,a=-4,b=21故选:A【点睛】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方5(2020·湖南衡阳?中考真题)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为米,则根据题意,列方程为( )ABCD【答案】C【解析】【分析】把阴影部分分别移到矩形的上边和左边,可得种植面积为一个矩形,根据种植的面积为600列出方程即可【详解】解:如图,设小道的宽为,则种植部分的长为,宽为 由题意得:故选C【点睛】考查一元二次方程的应用;利用平移的知识得到种植面积的形状是解决本题的突破点;得到种植面积的长与宽是解决本题的关键6(2020·贵州黔东南?中考真题)已知关于x的一元二次方程x2+5xm0的一个根是2,则另一个根是()A7B7C3D3【答案】A【解析】【分析】根据根与系数的关系即可求出答案【详解】解:设另一个根为x,则x+25,解得x7故选:A【点睛】此题主要考查一元二次方程根与系数的关系,正确理解一元二次方程根与系数的关系是解题关键7(2020·浙江衢州?中考真题)某厂家2020年15月份的口罩产量统计如图所示设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A180(1x)2=461B180(1+x)2=461C368(1x)2=442D368(1+x)2=442【答案】B【解析】【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x,根据“2月份的180万只,4月份的利润将达到461万只”,即可得出方程【详解】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461,故选:B【点睛】本题考查了一元二次方程的实际应用,理解题意是解题关键8(2020·四川自贡?中考真题)关于的一元二次方程有两个相等的实数根,则的值为( )ABCD【答案】A【解析】【分析】由题意,根据一元二次方程根的判别式值为零,求可解【详解】解:由一元二次方程有两个相等实根可得,判别式等于0可得, ,得,故应选A【点睛】本题考查了一元二次方程根的情况与判别式的关系,解答时注意=0方程有两个相等的实数根9(2020·山东临沂?中考真题)一元二次方程的解是( )A,B,C,D,【答案】B【解析】【分析】得出方程各项系数,再利用公式法求解即可.【详解】解:中,a=1,b=-4,c=-8,=16-4×1×(-8)=480,方程有两个不相等的实数根x=,即,故选B.【点睛】本题考查一元二次方程的解法,解题关键是熟练运用公式法,本题属于基础题型10(2020·湖南怀化?中考真题)已知一元二次方程有两个相等的实数根,则的值为( )ABCD【答案】C【解析】【分析】根据题意可得方程的判别式=0,进而可得关于k的方程,解方程即得答案【详解】解:由题意,得:,解得:故选:C【点睛】本题考查了一元二次方程的根的判别式,属于基础题型,熟知一元二次方程的根的判别式与方程根的个数的关系是解题关键11(2020·河南中考真题)国家统计局统计数据 显示,我国快递业务收入逐年增加2017年至2019年我国快递业务收入由亿元增加到亿元设我国2017年至2019年快递业务收入的年平均增长率为则可列方程为( )ABCD【答案】C【解析】【分析】设我国2017年至2019年快递业务收入的年平均增长率为,根据增长率的定义即可列出一元二次方程【详解】设我国2017年至2019年快递业务收入的年平均增长率为,2017年至2019年我国快递业务收入由亿元增加到亿元即2019年我国快递业务收入为亿元,可列方程:,故选C【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系得到方程12(2020·河南中考真题)定义运算:例如则方程的根的情况为( )A有两个不相等的实数根B有两个相等的实数根C无实数根D只有一个实数根【答案】A【解析】【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案【详解】解:根据定义得: 原方程有两个不相等的实数根,故选【点睛】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别式,掌握以上知识是解题的关键13(2020·黑龙江中考真题)已知关于的一元二次方程有两个实数根,则实数的取值范围是( )ABCD且【答案】B【解析】【分析】根据一元二次方程的根的判别式列不等式,再解不等式即可【详解】解: 关于的一元二次方程有两个实数根, 故选B【点睛】本题考查的是一元二次方程的根的判别式,掌握一元二次方程的根的判别式是解题的关键14(2020·湖南张家界?中考真题)已知等腰三角形的两边长分别是一元二次方程的两根,则该等腰三角形的底边长为( )A2B4C8D2或4【答案】A【解析】【分析】解一元二次方程求出方程的解,得出三角形的边长,用三角形存在的条件分类讨论边长,即可得出答案【详解】解:x26x+8=0(x4)(x2)=0解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,所以三角形的底边长为2,故选:A【点睛】本题考查了等腰三角形的性质,三角形的三边关系,解一元二次方程,能求出方程的解并能够判断三角形三边存在的条件是解此题的关键15(2020·湖南邵阳?中考真题)设方程的两根分别是,则的值为( )A3BCD【答案】A【解析】【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可【详解】由可知,其二次项系数,一次项系数,由韦达定理:,故选:A【点睛】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率16(2020·贵州黔西?中考真题)已知关于x的一元二次方程(m1)x22x10有实数根,则m的取值范围是( )Am2Bm2Cm2且m1Dm2且m1【答案】D【解析】【分析】根据二次项系数非零及根的判别式0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围【详解】解:因为关于x的一元二次方程x22xm0有实数根,所以b24ac224(m1)×10,解得m2又因为(m1)x22x10是一元二次方程,所以m10综合知,m的取值范围是m2且m1,因此本题选D【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式0,找出关于m的一元一次不等式组是解题的关键17(2020·贵州黔东南?中考真题)若菱形ABCD的一条对角线长为8,边CD的长是方程x210x+240的一个根,则该菱形ABCD的周长为()A16B24C16或24D48【答案】B【解析】【分析】解方程得出x4或x6,分两种情况:当ABAD4时,4+48,不能构成三角形;当ABAD6时,6+68,即可得出菱形ABCD的周长【详解】解:如图所示:四边形ABCD是菱形,ABBCCDAD,x210x+240,因式分解得:(x4)(x6)0,解得:x4或x6,分两种情况:当ABAD4时,4+48,不能构成三角形;当ABAD6时,6+68,菱形ABCD的周长4AB24故选:B【点睛】本题考查菱形的性质、解一元二次方程-因式分解法、三角形的三边关系,熟练掌握并灵活运用是解题的关键18(2020·贵州遵义?中考真题)已知,是方程的两根,则的值为( )A5B10C11D13【答案】D【解析】【分析】先利用完全平方公式,得到,再利用一元二次方程根与系数关系:,即可求解【详解】解:故选:D【点睛】此题主要考查完全平方公式的应用和一元二次方程根与系数关系,灵活运用完全平方公式和一元二次方程根与系数关系是解题关键19(2020·浙江中考真题)已知关于x的一元二次方程x2+bx10,则下列关于该方程根的判断,正确的是()A有两个不相等的实数根B有两个相等的实数根C没有实数根D实数根的个数与实数b的取值有关【答案】A【解析】【分析】先计算出判别式的值,再根据非负数的性质判断0,然后利用判别式的意义对各选项进行判断【详解】解:b24×(1)b2+40,方程有两个不相等的实数根故选:A【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程无实数根20(2020·安徽中考真题)下列方程中,有两个相等实数根的是( )ABCD【答案】A【解析】【分析】根据根的判别式逐一判断即可【详解】A.变形为,此时=4-4=0,此方程有两个相等的实数根,故选项A正确;B.中=0-4=-40,此时方程无实数根,故选项B错误;C.整理为,此时=4+12=160,此方程有两个不相等的实数根,故此选项错误;D.中,=40,此方程有两个不相等的实数根,故选项D错误.故选:A.【点睛】本题主要考查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键21(2020·山东聊城?中考真题)用配方法解一元二次方程,配方正确的是( )ABCD【答案】A【解析】【分析】按照配方法的步骤进行求解即可得答案.【详解】解:移项得,二次项系数化1的,配方得即故选:A【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤为(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方22(2020·山东菏泽?中考真题)等腰三角形的一边长是,另两边的长是关于的方程的两个根,则的值为( )ABC或D【答案】C【解析】【分析】分类讨论:当3为等腰三角形的底边,则方程有等根,所以0,求解即可,于是根据根与系数的关系得两腰的和4,满足三角形三边的关系;当3为等腰三角形的腰,则x3为方程的解,把x3代入方程可计算出k的值即可【详解】解:当3为等腰三角形的底边,根据题意得(-4)24k0,解得k4,此时,两腰的和=x1+x2=4>3,满足三角形三边的关系,所以k4;当3为等腰三角形的腰,则x3为方程的解,把x3代入方程得912k0,解得k3;综上,k的值为3或4,故选:C【点睛】本题考查了一元二次方程ax2bxc0(a0)的解以及根与系数的关系等腰三角形的性质和三角形的三边关系,注意解得k的值之后要看三边能否组成三角形23(2020·江苏南京?中考真题)关于x的方程(为常数)根的情况下,下列结论中正确的是( )A两个正根B两个负根C一个正根,一个负根D无实数根【答案】C【解析】【分析】先将方程整理为一般形式,再根据根的判别式得出方程由两个不等的实数根,然后又根与系数的关系判断根的正负即可【详解】解:,整理得:,方程有两个不等的实数根,设方程两个根为、,两个异号,而且负根的绝对值大故选:C【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;0,方程没有实数根也考查了一元二次方程根与系数的关系:,24(2020·湖北鄂州?中考真题)目前以等为代表的战略性新兴产业蓬勃发展某市2019年底有用户2万户,计划到2021年底全市用户数累计达到8.72万户设全市用户数年平均增长率为,则值为( )ABCD【答案】C【解析】【分析】先用含x的代数式表示出2020年底、2021年底用户的数量,然后根据2019年底到2021年底这三年的用户数量之和=8.72万户即得关于x的方程,解方程即得答案【详解】解:设全市用户数年平均增长率为,根据题意,得:,解这个方程,得:,(不合题意,舍去)x的值为40%故选:C【点睛】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键25(2020·山东潍坊?中考真题)关于x的一元二次方程根的情况,下列说法正确的是( )A有两个不相等的实数根B有两个相等的实数根C无实数根D无法确定【答案】A【解析】【分析】先计算判别式,再进行配方得到=(k-1)2+4,然后根据非负数的性质得到0,再利用判别式的意义即可得到方程总有两个不相等的实数根【详解】=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,(k-1)2+40,即0,方程总有两个不相等的实数根故选:A【点睛】本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程无实数根上面的结论反过来也成立26(2020·上海中考真题)用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是()Ay22y+1=0By2+2y+1=0Cy2+y+2=0Dy2+y2=0【答案】A【解析】【分析】方程的两个分式具备倒数关系,设=y,则原方程化为y+=2,再转化为整式方程y2-2y+1=0即可求解【详解】把=y代入原方程得:y+=2,转化为整式方程为y22y+1=0故选:A【点睛】考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧27(2020·湖南岳阳?中考真题)对于一个函数,自变量取时,函数值等于0,则称为这个函数的零点若关于的二次函数有两个不相等的零点,关于的方程有两个不相等的非零实数根,则下列关系式一定正确的是( )ABCD【答案】A【解析】【分析】根据根与系数的关系可以求出,的值,用作差法比较的大小关系,的大小关系,根据可求出m的取值范围,结合的大小关系,的大小关系从而得出选项【详解】解:是的两个不相等的零点即是的两个不相等的实数根解得方程有两个不相等的非零实数根解得0,而由题意知解得当时,;当时,;当m=-2时,无意义;当时,取值范围不确定,故选A【点睛】本题考查了一元二次方程的根与系数的关系,判别式与根的关系及一元二次方程与二次函数的关系解题的关键是熟记根与系数的关系,对于(a0)的两根为,则二、填空题28(2020·山东枣庄?中考真题)已知关于的一元二次方程有一个根为,则的值为_【答案】-1【解析】【分析】直接把代入方程计算即可【详解】代入方程得:解得:是关于的一元二次方程故答案为-1【点睛】本题考查一元二次方程解的定义,直接把方程得解代入即可求出参数值,需要注意的是一元二次方程的平方项系数不为029(2020·山东德州?中考真题)菱形的一条对角线长为8,其边长是方程的一个根,则该菱形的周长为_【答案】20【解析】【分析】解方程得出x=4,或x=5,分两种情况:当AB=AD=4时,4+4=8,不能构成三角形;当AB=AD=5时,5+58,即可得出菱形ABCD的周长【详解】解:如图所示: 四边形ABCD是菱形,AB=BC=CD=AD,因式分解得:(x-4)(x-5)=0,解得:x=4,或 x=5,分两种情况:当AB=AD=4时,4+4=8,不能构成三角形;当AB=AD=5时,5+58,可构成三角形;菱形ABCD的周长=4AB=20故答案为:20【点睛】本题考查了菱形的性质、一元二次方程的解法、三角形的三边关系;熟练掌握菱形的性质,由三角形的三边关系得出AB是解决问题的关键30(2020·四川泸州?中考真题)已知是一元二次方程的两个实数根,则的值是_【答案】2【解析】【分析】由已知结合根与系数的关系可得:=4,= -7,=,代入可得答案.【详解】解:是一元二次方程的两个实数根,=4,= -7,=2,故答案为:2【点睛】本题考查的知识点是一元二次方程根与系数的关系,难度不大,属于基础题31(2020·江西中考真题)若关于的一元二次方程的一个根为,则这个一元二次方程的另一个根为_【答案】-2【解析】【分析】由题目已知x=1是方程的根,代入方程后求出k的值,再利用一元二次方程的求根方法即可答题【详解】解:将x=1代入一元二次方程有:,k=-1,方程即方程的另一个根为x=-2故本题的答案为-2【点睛】本题主要考查了一元二次方程用已知根求方程未知系数以及利用因式分解法解一元二次方程,其中利用已知根代入方程求出未知系数是解题的关键32(2020·北京中考真题)已知关于的方程有两个相等的实数根,则的值是_【答案】1【解析】【分析】由一元二次方程根的判别式列方程可得答案【详解】解:一元二次方程有两个相等的实数根,可得判别式,解得:故答案为:【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键33(2020·江苏扬州?中考真题)方程(x+1)2=9的解是_【答案】2或-4【解析】试题分析:根据直接开方法即可解出方程(x+1)2=9x+1=±3x=2或-4考点:本题考查的是解一元二次方程点评:解答本题的关键是熟练掌握一个正数有两个平方根,它们互为相反数34(2020·湖北咸宁?中考真题)若关于x的一元二次方程有实数根,则n的取值范围是_【答案】n0【解析】【分析】根据平方的非负性可得结果【详解】解:关于x的一元二次方程有实数根,而,n0,故答案为:n0【点睛】本题考查了一元二次方程的解,掌握根的判别方法是解题的关键35(2020·湖北荆门?中考真题)已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_【答案】1【解析】【分析】利用因式分解法求出x1,x2,再根据根的关系即可求解【详解】解(x-3m)(x-m)=0x-3m=0或x-m=0解得x1=3m,x2=m,3m-m=2解得m=1故答案为:1【点睛】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的运用36(2020·湖北黄冈?中考真题)已知是一元二次方程的两根,则_【答案】-1【解析】【分析】根据根与系数的关系得到x1x2-1,代入计算即可【详解】解:一元二次方程x22x10的两根为x1,x2,x1x2-1,-1故答案为:-1【点睛】本题考查了一元二次方程ax2bxc0(a0)的根与系数的关系:若方程的两根为x1,x2,则x1x2,x1x237(2020·湖南邵阳?中考真题)中国古代数学家杨辉的田亩比数乘除减法中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为_【答案】x(x+12)=864【解析】【分析】本题理清题意后,可利用矩形面积公式,根据假设未知数表示长与宽,按要求列方程即可【详解】因为宽为x,且宽比长少12,所以长为x+12,故根据矩形面积公式列方程:x(x+12)=864,故答案:x(x+12)=864【点睛】本题考查一元二次方程的实际应用,此类型题目去除复杂题目背景后,按照常规公式,假设未知数,列方程求解即可38(2020·湖南中考真题)如图1,已知四边形ABCD是正方形,将,分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF4,EG6,则DG的长为_【答案】12【解析】【分析】设正方形ABCD的边长为x,由翻折及已知线段的长,可用含x的式子分别表示出BE、BF及EF的长;在中,由勾股定理得关于x的方程,解得x的值,即为DG的长【详解】设正方形ABCD的边长为,则,由翻折的性质得:,如图,在中,由勾股定理得:即整理得:,即解得或(不符题意,舍去)则故答案为:12【点睛】本题考查了正方形的性质、翻折的性质、勾股定理等知识点,熟练掌握翻折的性质是解题关键39(2020·湖南中考真题)阅读理解:对于x3(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3(n2+1)x+nx3n2xx+nx(x2n2)(xn)x(xn)(x+n)(xn)(xn)(x2+nx1)理解运用:如果x3(n2+1)x+n0,那么(xn)(x2+nx1)0,即有xn0或x2+nx10,因此,方程xn0和x2+nx10的所有解就是方程x3(n2+1)x+n0的解解决问题:求方程x35x+20的解为_【答案】x2或x1+或x1【解析】【分析】将原方程左边变形为x34xx+20,再进一步因式分解得(x2)x(x+2)10,据此得到两个关于x的方程求解可得【详解】解:x35x+20,x34xx+20,x(x24)(x2)0,x(x+2)(x2)(x2)0,则(x2)x(x+2)10,即(x2)(x2+2x1)0,x20或x2+2x10,解得x2或x1,故答案为:x2或x1+或x1【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到解方程的方法40(2020·四川乐山?中考真题)已知,且则的值是_【答案】4或-1【解析】【分析】将已知等式两边同除以进行变形,再利用换元法和因式分解法解一元二次方程即可得【详解】将两边同除以得:令则因式分解得:解得或即的值是4或故答案为:4或【点睛】本题考查了利用换元法和因式分解法解一元二次方程,将已知等式进行正确变形是解题关键41(2020·山东泰安?中考真题)已知二次函数(是常数,)的与的部分对应值如下表:02606下列结论:;当时,函数最小值为;若点,点在二次函数图象上,则;方程有两个不相等的实数根其中,正确结论的序号是_(把所有正确结论的序号都填上)【答案】【解析】【分析】先根据表格中的数据利用待定系数法求出抛物线的解析式,进而可直接判断;由抛物线的性质可判断;把点和点代入解析式求出y1、y2即可;当y=5时,利用一元二次方程的根的判别式即可判断,进而可得答案【详解】解:由抛物线过点(5,6)、(2,6)、(0,4),可得:,解得:,二次函数的解析式是,a=10,故正确;当时,y有最小值,故错误;若点,点在二次函数图象上,则,故正确;当y=5时,方程即,方程有两个不相等的实数根,故正确;综上,正确的结论是:故答案为:【点睛】本题以表格的形式考查了待定系数法求二次函数的解析式、二次函数的性质以及一元二次方程的根的判别式等知识,属于常考题型,熟练掌握二次函数与一元二次方程的基本知识是解题的关键42(2020·四川甘孜?中考真题)三角形的两边长分别为4和7,第三边的长是方程的解,则这个三角形的周长是_【答案】17【解析】【分析】先利用因式分解法求解得出x的值,再根据三角形三边之间的关系判断能否构成三角形,从而得出答案【详解】解:解方程得x1=2,x2=6,当x=2时,2+4=6<7,不能构成三角形,舍去;当x=6时,2+67,能构成三角形,此时三角形的周长为4+7+6=17.故答案为:17【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键43(2020·四川成都?中考真题)关的一元二次方程有实数根,则实数的取值范围是_【答案】【解析】【分析】方程有实数根,则0,建立关于m的不等式,求出m的取值范围【详解】解:由题意知,=0,故答案为【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根44(2020·湖南怀化?中考真题)如图,都是一边在轴上的等边三角形,点,都在反比例函数的图象上,点,都在轴上,则的坐标为_【答案】【解析】【分析】如图,过点B1作B1Cx轴于点C,过点B2作B2Dx轴于点D,过点B3作B3Ex轴于点E,先在OCB1中,表示出OC和B1C的长度,表示出B1的坐标,代入反比例函数,求出OC的长度和OA1的长度,表示出A1的坐标,同理可求得A2、A3的坐标,即可发现一般规律【详解】如图,过点B1作B1Cx轴于点C,过点B2作B2Dx轴于点D,过点B3作B3Ex轴于点E,OA1B1为等边三角形,B1OC=60°,B1C= OC,设OC的长度为x,则B1的坐标为(),代入函数关系式可得:,解得,x=1或x=-1(舍去),OA1=2OC=2,A1(2,0)设A1D的长度为y,同理,B2D为y,B2的坐标表示为,代入函数关系式可得,解得:y=或y=(舍去)A1D=,A1A2=,OA2=A2(,0)设A2E的长度为z,同理,B3E为z,B3的坐标表示为,代入函数关系式可得,解得:z=或z=(舍去)A2E=,A2A3=,OA3=A3(,0),综上可得:An(,0),故答案为:【点睛】本题考查图形类规律探索、反比例函数的性质、等边三角形的性质、求解一元二次方程和解直角三角形,灵活运用各类知识求出A1、A2、A3的坐标是解题的关键45(2020·江苏扬州?中考真题)方程的根是_【答案】【解析】【分析】利用直接开平方法解方程.【详解】解:,故答案为:.【点睛】此题考查一元二次方程的解法:直接开平方法,根据一元二次方程的特点选择恰当的解法是解题的关键.46(2020·上海中考真题)如果关于x的方程x24x+m=0有两个相等的实数根,那么m的值是_【答案】4【解析】【分析】一元二次方程有两个相等的实根,即根的判别式=b2-4ac=0,即可求m值【详解】依题意方程x24x+m=0有两个相等的实数根,=b24ac=(4)24m=0,解得:m=4故答案为:4【点睛】此题主要考查的是一元二次方程的根判别式,当=b2-4ac=0时,方程有两个相等的实根,当=b2-4ac0时,方程有两个不相等的实根,当=b2-4ac0时,方程无实数根47(2020·四川内江?中考真题)已知关于x的一元二次方程有一实数根为,则该方程的另一个实数根为_【答案】【解析】【分析】根据一元二次方程的解的定义把x=-1代入原方程得到关于m的一元二次方程,解得m的值,然后根据一元二次方程的定义确定m的值【详解】解:把x=-1代入得m2-5m+4=0,解得m1=1,m2=4,(m-1)20,m1m=4.方程为9x2+12x+3=0.设另一个根为a,则-a=.a=-.故答案为: -【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根也考查了一元二次方程的定义48(2020·辽宁抚顺?中考真题)如图,在中,分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和,作直线,交于点,连接,若,则的长为_【答案】5【解析】【分析】由题意可得:直线MN是AB的垂直平分线,从而有EA=EB,然后设BE=AE=x,则可用含x的代数式表示出BC,于是在RtBCE中根据勾股定理可得关于x的方程,解方程即可求出结果【详解】解:由题意可得:直线MN是AB的垂直平分线,EA=EB,设BE=AE=x,则AC=x+3,AC=2BC,在RtBCE中,由勾股定理,得,即,解得:(舍去),BE=5故答案为:5【点睛】本题考查了线段垂直平分线的尺规作图和性质、勾股定理和一元二次方程的解法等知识,属于常考题型,熟练掌握上述知识、灵活应用方程思想是解题关键49(2020·四川自贡?中考真题)如图, 直线与轴交于点,与双曲线 在第三象限交于两点,且 ;下列等边三角形,的边,在轴上,顶点在该双曲线第一象限的分支上,则= _,前25个等边三角形的周长之和为