欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    专题25一次函数(1)-2020年全国中考数学真题分项汇编(第02期全国通用)(解析版)(,)(,).doc

    • 资源ID:4850276       资源大小:10.61MB        全文页数:188页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    专题25一次函数(1)-2020年全国中考数学真题分项汇编(第02期全国通用)(解析版)(,)(,).doc

    专题25一次函数(1)(全国一年)学校:_姓名:_班级:_考号:_一、单选题1(2020·陕西中考真题)在平面直角坐标系中,O为坐标原点若直线yx+3分别与x轴、直线y2x交于点A、B,则AOB的面积为()A2B3C4D6【答案】B【解析】【分析】根据方程或方程组得到A(3,0),B(1,2),根据三角形的面积公式即可得到结论【详解】解:在yx+3中,令y0,得x3,解得,A(3,0),B(1,2),AOB的面积3×23,故选:B【点睛】本题考查了两直线与坐标轴围成图形的面积,求出交点坐标是解题的关键2(2020·湖北省直辖县级单位?中考真题)对于一次函数,下列说法不正确的是( )A图象经过点B图象与x轴交于点C图象不经过第四象限D当时,【答案】D【解析】【分析】根据一次函数的图像与性质即可求解【详解】A.图象经过点,正确; B.图象与x轴交于点,正确C.图象经过第一、二、三象限,故错误; D.当时,y4,故错误;故选D【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质特点3(2020·四川内江?中考真题)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线()与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是( )ABCD且【答案】D【解析】【分析】画出函数图象,利用图象可得t的取值范围.【详解】,当y=0时,x=;当x=0时,y=2t+2,直线与x轴的交点坐标为(,0),与y轴的交点坐标为(0,2t+2),t>0,2t+2>2,当t=时,2t+2=3,此时=-6,由图象知:直线()与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,如图1,当t=2时,2t+2=6,此时=-3,由图象知:直线()与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,如图2,当t=1时,2t+2=4,=-4,由图象知:直线()与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,如图3,且,故选:D.【点睛】此题考查一次函数的图象的性质,一次函数图象与坐标轴交点坐标,根据t的值正确画出图象理解题意是解题的关键.4(2020·四川内江?中考真题)将直线向上平移两个单位,平移后的直线所对应的函数关系式为( )ABCD【答案】C【解析】【分析】向上平移时,k的值不变,只有b发生变化【详解】解:原直线的k=-2,b=-1;向上平移两个单位得到了新直线,那么新直线的k=-2,b=-1+2=1新直线的解析式为y=-2x+1故选:C【点睛】本题主要考查了一次函数图象的变换,求直线平移后的解析式时要注意平移时k和b的值发生变化5(2020·湖南邵阳?中考真题)已知正比例函数的图象过点,把正比例函数的图象平移,使它过点,则平移后的函数图象大致是( )ABCD【答案】D【解析】【分析】先求出正比例函数解析式,再根据平移和经过点求出一次函数解析式,即可求解【详解】解:把点代入得解得,正比例函数解析式为,设正比例函数平移后函数解析式为,把点代入得,平移后函数解析式为,故函数图象大致故选:D【点睛】本题考查了求正比例函数,一次函数解析式,一次函数图象与性质,根据正比例函数求出平移后一次函数解析式是解题关键6(2020·湖北孝感?中考真题)如图,在四边形中,动点沿路径从点出发,以每秒1个单位长度的速度向点运动过点作,垂足为设点运动的时间为(单位:),的面积为,则关于的函数图象大致是( )ABCD【答案】D【解析】【分析】分点P在AB边上,如图1,点P在BC边上,如图2,点P在CD边上,如图3,利用解直角三角形的知识和三角形的面积公式求出相应的函数关系式,再根据相应函数的图象与性质即可进行判断【详解】解:当点P在AB边上,即0x4时,如图1,AP=x,;当点P在BC边上,即4x10时,如图2,过点B作BMAD于点M,则,;当点P在CD边上,即10x12时,如图3,AD=,;综上,y与x的函数关系式是:,其对应的函数图象应为:故选:D【点睛】本题以直角梯形为载体,主要考查了动点问题的函数图象、一次函数和二次函数的图象与性质以及解直角三角形等知识,属于常考题型,正确分类、列出相应的函数关系式是解题的关键7(2020·湖北咸宁?中考真题)在平面直角坐标系中,对于横、纵坐标相等的点称为“好点”下列函数的图象中不存在“好点”的是( )ABCD【答案】B【解析】【分析】根据“好点”的定义判断出“好点”即是直线y=x上的点,再各函数中令y=x,对应方程无解即不存在“好点”.【详解】解:根据“好点”的定义,好点即为直线y=x上的点,令各函数中y=x,A、x=-x,解得:x=0,即“好点”为(0,0),故选项不符合;B、,无解,即该函数图像中不存在“好点”,故选项符合;C、,解得:,经检验是原方程的解,即“好点”为(,)和(-,-),故选项不符合;D、,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合;故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.8(2020·山东潍坊?中考真题)若定义一种新运算:例如:;则函数的图象大致是( )ABCD【答案】A【解析】【分析】根据,可得当时,分两种情况当时和当时,分别求出一次函数的关系式,然后判断即可【详解】解:当时,当时,即:,当时,即:,当时,函数图像向上,随的增大而增大,综上所述,A选项符合题意,故选:A【点睛】本题考查了一次函数的图象,能在新定义下,求出函数关系式是解题的关键9(2020·北京中考真题)有一个装有水的容器,如图所示容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A正比例函数关系B一次函数关系C二次函数关系D反比例函数关系【答案】B【解析】【分析】设水面高度为 注水时间为分钟,根据题意写出与的函数关系式,从而可得答案【详解】解:设水面高度为 注水时间为分钟,则由题意得: 所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键10(2020·湖南湘西?中考真题)已知正比例函数的图象与反比例函数的图象相交于点,下列说法正确的是( )A正比例函数的解析式是B两个函数图象的另一交点坐标为C正比例函数与反比例函数都随x的增大而增大D当或时,【答案】D【解析】【分析】根据两个函数图像的交点,可以分别求得两个函数的解析式和,可判断A错误;两个函数的两个交点关于原点对称,可判断B错误,再根据正比例函数与反比例函数图像的性质,可判断C错误,D正确,即可选出答案【详解】解:根据正比例函数的图象与反比例函数的图象相交于点,即可设,将分别代入,求得,即正比例函数,反比例函数,故A错误;另一个交点与关于原点对称,即,故B错误;正比例函数随x的增大而减小,而反比例函数在第二、四象限的每一个象限内y均随x的增大而增大,故C错误;根据图像性质,当或时,反比例函数均在正比例函数的下方,故D正确故选D【点睛】本题目考查正比例函数与反比例函数,是中考的重要考点,熟练掌握两种函数的性质是顺利解题的关键11(2020·山东青岛?中考真题)已知在同一直角坐标系中二次函数和反比例函数的图象如图所示,则一次函数的图象可能是( )ABCD【答案】B【解析】【分析】根据反比例函数图象和二次函数图象位置可得出:a0,b0,c0,由此可得出0,一次函数图象与y轴的交点在y轴的负半轴,对照四个选项即可解答【详解】由二次函数图象可知:a0,对称轴0,a0,b0,由反比例函数图象知:c0,0,一次函数图象与y轴的交点在y轴的负半轴,对照四个选项,只有B选项符合一次函数的图象特征故选:B·【点睛】本题考查反比例函数的图象、二次函数的图象、一次函数的图象,熟练掌握函数图象与系数之间的关系是解答的关键·12(2020·江西中考真题)在平面直角坐标系中,点为坐标原点,抛物线与轴交于点,与轴正半轴交于点,连接,将向右上方平移,得到,且点,落在抛物线的对称轴上,点落在抛物线上,则直线的表达式为( )ABCD【答案】B【解析】【分析】先求出A、B两点的坐标和对称轴,先确定三角形向右平移了1个单位长度,求得B的坐标,再确定三角形向上平移5个单位,求得点A的坐标,用待定系数法即可求解【详解】解:当y=0时,解得x1=-1,x2=3,当x=0时,y=-3,A(0,-3),B(3,0),对称轴为直线,经过平移,落在抛物线的对称轴上,点落在抛物线上,三角形向右平移1个单位,即B的横坐标为3+1=4,当x=4时,y=42-2×4-3=5,B(4,5),三角形向上平移5个单位,此时A(0+1,-3+5),A(1,2),设直线的表达式为y=kx+b,代入A(1,2),B(4,5),可得解得:,故直线的表达式为,故选:B【点睛】本题考查二次函数的图象和与坐标轴的交点坐标、图形的平移和待定系数法求一次函数表达式等知识点,解题的关键是熟练掌握二次函数的图形和性质13(2020·湖南湘潭?中考真题)如图,直线经过点,当时,则的取值范围为( )ABCD【答案】A【解析】【分析】将代入,可得,再将变形整理,得,求解即可【详解】解:由题意将代入,可得,即,整理得,由图像可知,故选:A【点睛】本题考查了一次函数的图像和性质,解题关键在于灵活应用待定系数法和不等式的性质14(2020·湖南怀化?中考真题)在同一平面直角坐标系中,一次函数与反比例函数的图像如图所示、则当时,自变量的取值范围为( )ABCD【答案】D【解析】【分析】观察图像得到两个交点的横坐标,再观察一次函数函数图像在反比例函数图像上方的区段,从而可得答案【详解】解:由图像可得:两个交点的横坐标分别是: 所以:当时, ,故选D【点睛】本题考查的是利用一次函数图像与反比例函数图像解不等式,掌握数型结合的方法是解题的关键15(2020·安徽中考真题)已知一次函数的图象经过点,且随的增大而减小,则点的坐标可以是( )ABCD【答案】B【解析】【分析】先根据一次函数的增减性判断出k的符号,再将各项坐标代入解析式进行逐一判断即可【详解】一次函数的函数值随的增大而减小,k0,A当x=-1,y=2时,-k+3=2,解得k=10,此选项不符合题意;B当x=1,y=-2时,k+3=-2,解得k=-50,此选项符合题意;C当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D当x=3,y=4时,3k+3=4,解得k=0,此选项不符合题意,故选:B【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键16(2020·江苏连云港?中考真题)快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶图中折线表示快、慢两车之间的路程与它们的行驶时间之间的函数关系小欣同学结合图像得出如下结论:快车途中停留了; 快车速度比慢车速度多;图中; 快车先到达目的地其中正确的是( )ABCD【答案】B【解析】【分析】根据函数图像与路程的关系即可求出各车的时间与路程的关系,依次判断【详解】当t=2h时,表示两车相遇,2-2.5h表示两车都在休息,没有前进,2.5-3.6时,其中一车行驶,其速度为=80km/h,设另一车的速度为x,依题意得2(x+80)=360,解得x=100km/h,故快车途中停留了3.6-2=1.6h,错误;快车速度比慢车速度多,正确;t=5h时,慢车行驶的路程为(5-0.5)×80=360km,即得到目的地,比快车先到,故错误;t=5h时,快车行驶的路程为(5-1.6)×100=340km,故两车相距340m,故正确;故选B【点睛】此题主要考查一次函数的应用,解题的关键是根据函数图像得到路程与时间的关系二、填空题17(2020·湖北省直辖县级单位?中考真题)如图,已知直线,直线和点,过点作y轴的平行线交直线a于点,过点作x轴的平行线交直线b于点,过点作y轴的平行线交直线a于点,过点作x轴的平行线交直线b于点,按此作法进行下去,则点的横坐标为_【答案】【解析】【分析】根据题意求出P1,P5,P9的坐标,发现规律即可求解【详解】,在直线上(1,1);过点作x轴的平行线交直线b于点,在直线上(-2,1)同理求出P3(-2,-2),P4(4,-2),P5(4,4),P6(-8,4),P7(-8,-8),P8(16,-8),P9(16,16)可得P4n+1(22n, 22n )(n1,n为整数)令4n+1=2021解得n=505P2021(, )的横坐标为【点睛】此题主要考查坐标的规律探索,解题的关键是熟知一次函数的图像与性质,找到坐标规律进行求解18(2020·江苏常州?中考真题)若一次函数的函数值y随自变量x增大而增大,则实数k的取值范围是_【答案】k0【解析】【分析】直角利用一次函数增减性与系数的关系解答即可【详解】解:一次函数的函数值y随自变量x增大而增大k0故答案为k0【点睛】本题主要考查了一次函数增减性与系数的关系,当一次函数的一次项系数大于零时,一次函数的函数值随着自变量x的增大而增大19(2020·辽宁抚顺?中考真题)若一次函数的图象经过点,则_【答案】8【解析】【分析】将点代入一次函数的解析式中即可求出m的值【详解】解:由题意知,将点代入一次函数的解析式中,即:,解得:故答案为:8【点睛】本题考查了一次函数的图像和性质,点在图像上,则将点的坐标代入解析式中即可20(2020·四川内江?中考真题)已知抛物线(如图)和直线我们规定:当x取任意一个值时,x对应的函数值分别为和若,取和中较大者为M;若,记当时,M的最大值为4;当时,使的x的取值范围是;当时,使的x的值是,;当时,M随x的增大而增大上述结论正确的是_(填写所有正确结论的序号)【答案】【解析】【分析】根据题目中的较大者M的定义逐个分析即可【详解】解:对于:当时,显然只要,则M的值为,故错误;对于:当时,在同一直角坐标系内画出的图像,如下图所示,其中红色部分即表示M,联立的函数表达式,即,求得交点横坐标为和,观察图形可知的x的取值范围是,故正确;对于:当时,在同一直角坐标系内画出的图像,如下图所示,其中红色部分即表示M,联立的函数表达式,即,求得其交点的横坐标为和,故M=3时分类讨论:当时,解得或,当时,解得(舍),故正确;对于:当时,函数,此时图像一直在图像上方,如下图所示,故此时M=,故M随x的增大而增大,故正确故答案为:【点睛】本题考查了二次函数与一次函数的图像性质及交点坐标,本题的关键是要能理解M的含义,学会用数形结合的方法分析问题21(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A(-2,0),直线与x轴交于点B,以AB为边作等边,过点作轴,交直线l于点,以为边作等边,过点作轴,交直线l于点,以为边作等边,以此类推,则点的纵坐标是_【答案】【解析】【分析】如图,过A1作A1CAB与C,过A2作A2C1A1B1于C1,过A3作A3C2A2B2于C2,先根据直线方程与x轴交于点B(-1,0),且与x轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A1、A2、A3、的纵坐标,进而得到An的纵坐标,据此可得A2020的纵坐标,即可解答【详解】如图,过A1作A1CAB与C,过A2作A2C1A1B1于C1,过A3作A3C2A2B2于C2,先根据直线方程与x轴交于点B(-1,0),与y轴交于点D(0,),OB=1,OD=,DBO=30º由题意可得:A1B1B=A2B2B1=30º,B1A1B=B2A2B1=60ºA1BB1=A2B1B2=90º,AB=1,A1B1=2A1B=21,A2B2=2A2B1=22,A3B3=2A3B2=23,AnBn=2nA1C=AB=×1,A1纵坐标为×1=;A2C1=A1B1=,A2的纵坐标为×1+=;A3C2=A2B2=,A3的纵坐标为×1+=;由此规律可得:AnCn-1=,An的纵坐标为=,A2020=,故答案为:【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律22(2020·上海中考真题)小明从家步行到学校需走的路程为1800米图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行_米【答案】350【解析】【分析】当8t20时,设s=kt+b,将(8,960)、(20,1800)代入求得s=70t+400,求出t=15时s的值,从而得出答案【详解】解:当8t20时,设s=kt+b,将(8,960)、(20,1800)代入,得:,解得:,s=70t+400;当t=15时,s=1450,18001450=350,当小明从家出发去学校步行15分钟时,到学校还需步行350米故答案为:350【点睛】本题主要考查一次函数的应用,解题的关键是理解题意,从实际问题中抽象出一次函数的模型,并熟练掌握待定系数法求一次函数的解析式23(2020·上海中考真题)如果函数ykx(k0)的图象经过第二、四象限,那么y的值随x的值增大而_(填“增大”或“减小”)【答案】减小【解析】【分析】根据正比例函数的性质进行解答即可【详解】解:函数ykx(k0)的图象经过第二、四象限,那么y的值随x的值增大而减小,故答案为:减小【点睛】此题考查的是判断正比例函数的增减性,掌握正比例函数的性质是解决此题的关键24(2020·北京中考真题)在平面直角坐标系中,直线与双曲线交于A,B两点若点A,B的纵坐标分别为,则的值为_【答案】0【解析】【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.【详解】解:正比例函数和反比例函数均关于坐标原点O对称,正比例函数和反比例函数的交点亦关于坐标原点中心对称,故答案为:0.【点睛】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.25(2020·湖南湘西?中考真题)在平面直角坐标系中,O为原点,点,点B在y轴的正半轴上,矩形的顶点D,E,C分别在上,将矩形沿x轴向右平移,当矩形与重叠部分的面积为时,则矩形向右平移的距离为_【答案】2【解析】【分析】先求出点B的坐标(0, ),得到直线AB的解析式为: ,根据点D的坐标求出OC的长度,利用矩形与重叠部分的面积为列出关系式求出,再利用一次函数关系式求出=4,即可得到平移的距离.【详解】,OA=6,在RtAOB中,B(0, ),直线AB的解析式为: ,当x=2时,y=,E(2,),即DE=,四边形CODE是矩形,OC=DE=,设矩形沿x轴向右平移后得到矩形, 交AB于点G,OB,AOB,=AOB=30°,=30°,,平移后的矩形与重叠部分的面积为,五边形的面积为,矩形向右平移的距离=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.26(2020·天津中考真题)将直线向上平移1个单位长度,平移后直线的解析式为_【答案】【解析】【分析】根据直线的平移规律是上加下减的原则进行解答即可【详解】解:直线的平移规律是“上加下减”,将直线向上平移1个单位长度所得到的的直线的解析式为:;故答案为:【点睛】本题考查的是一次函数的图像与几何变换,熟知“上加下减”的原则是解决本题目的关键27(2020·江苏南京?中考真题)将一次函数的图象绕原点逆时针旋转,所得到的图像对应的函数表达式是_【答案】【解析】【分析】根据一次函数互相垂直时系数之积等于-1,进而得出答案;【详解】一次函数的解析式为,设与x轴、y轴的交点坐标为、,一次函数的图象绕原点逆时针旋转,旋转后得到的图象与原图象垂直,旋转后的点为、,令,代入点得,旋转后一次函数解析式为故答案为【点睛】本题主要考查了一次函数图像与几何变换,正确把握互相垂直的两直线的位置关系是解题的关键28(2020·山东临沂?中考真题)点和点在直线上,则m与n的大小关系是_【答案】mn【解析】【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论【详解】解:直线中,k=20,此函数y随着x的增大而增大,2,mn故答案为:mn【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键29(2020·安徽中考真题)如图,一次函数的图象与轴和轴分别交于点和点与反比例函数上的图象在第一象限内交于点轴,轴,垂足分别为点,当矩形与的面积相等时,的值为_【答案】【解析】【分析】根据题意由反比例函数的几何意义得:再求解的坐标及建立方程求解即可【详解】解: 矩形,在上, 把代入: 把代入: 由题意得: 解得:(舍去) 故答案为:【点睛】本题考查的是一次函数与反比例函数的性质,掌握反比例函数中的几何意义,一次函数与坐标轴围成的三角形面积的计算是解题的关键30(2020·四川成都?中考真题)一次函数的值随值的增大而增大,则常数的取值范围为_【答案】【解析】【分析】根据一次函数的性质得2m-10,然后解不等式即可【详解】解:因为一次函数的值随值的增大而增大,所以2m-10解得.故答案为:【点睛】本题考查了一次函数的性质:k0,y随x的增大而增大,函数从左到右上升;k0,y随x的增大而减小,函数从左到右下降.31(2020·黑龙江绥化?中考真题)黑龙江省某企业用货车向乡镇运送农用物资,行驶2小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程与行驶时间的函数关系如图所示,2小时后货车的速度是_【答案】65【解析】【分析】根据函数图象中的数据,可以根据速度=路程时间,计算2小时后火车的速度.【详解】解:观察图象可得,当x=2时,y=156,当x=3时,y=221.2小时后货车的速度是(221-156)(3-2)=65.故答案是:65.【点睛】本题主要考查一次函数的应用,解题的关键是理解题意,从实际问题中抽象出一次函数的模型,并且得到关键的信息32(2020·江苏苏州?中考真题)若一次函数的图像与轴交于点,则_【答案】2【解析】【分析】把点(m,0)代入y=3x-6即可求得m的值【详解】解:一次函数y=3x-6的图象与x轴交于点(m,0),3m-6=0,解得m=2.故答案为:2【点睛】本题考查了一次函数图象上点的坐标特征,图象上点的坐标适合解析式是解题的关键33(2020·四川达州?中考真题)已知k为正整数,无论k取何值,直线与直线都交于一个固定的点,这个点的坐标是_;记直线和与x轴围成的三角形面积为,则_,的值为_【答案】 【解析】【分析】联立直线和成方程组,通过解方程组,即可得到交点坐标;分别表示出直线和与x轴的交点,求得交点坐标即可得到三角形的边长与高,根据三角形面积公式进行列式并化简,即可得到直线和与x轴围成的三角形面积为的表达式,从而可得到和,再依据分数的运算方法即可得解【详解】解:联立直线与直线成方程组,解得,这两条直线都交于一个固定的点,这个点的坐标是;直线与x轴的交点为,直线与x轴的交点为,故答案为:;【点睛】本题考查了一次函数(k0,b为常数)的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0;也考查了坐标与线段的关系、三角形的面积公式以及分数的特殊运算方法解题的关键是熟练掌握一次函数(k0,b为常数)的图象与性质,能灵活运用分数的特殊运算方法34(2020·重庆中考真题)A,B两地相距240 km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止,在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止,两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线所示其中点C的坐标是,点D的坐标是,则点E的坐标是_【答案】【解析】【分析】先根据CD段的求出乙货车的行驶速度,再根据两车的行驶速度分析出点E表示的意义,由此即可得出答案【详解】设乙货车的行驶速度为由题意可知,图中的点D表示的是甲、乙货车相遇点C的坐标是,点D的坐标是此时甲、乙货车行驶的时间为,甲货车行驶的距离为,乙货车行驶的距离为乙货车从B地前往A地所需时间为由此可知,图中点E表示的是乙货车行驶至A地,EF段表示的是乙货车停止后,甲货车继续行驶至B地则点E的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即即点E的坐标为故答案为:【点睛】本题考查了一次函数的实际应用,读懂函数图象是解题关键35(2020·江苏连云港?中考真题)如图,在平面直角坐标系中,半径为2的与轴的正半轴交于点,点是上一动点,点为弦的中点,直线与轴、轴分别交于点、,则面积的最小值为_【答案】2【解析】【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MNDE于N首先证明点C的运动轨迹是以M为圆心,1为半径的M,设M交MN于C求出MN,当点C与C重合时,CDE的面积最小【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MNDE于NAC=CB,AM=OM,MC=OB=1,点C的运动轨迹是以M为圆心,1为半径的M,设M交MN于C直线y=x-3与x轴、y轴分别交于点D、E,D(4,0),E(0,-3),OD=4,OE=3,MDN=ODE,MND=DOE,DNMDOE,当点C与C重合时,CDE的面积最小,CDE的面积最小值,故答案为2【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型三、解答题36(2020·湖南娄底?中考真题)如图,抛物线经过点、(1)求抛物线的解析式;(2)点是抛物线上的动点,当时,试确定m的值,使得的面积最大;(3)抛物线上是否存在不同于点B的点D,满足,若存在,请求出点D的坐标;若不存在,请说明理由【答案】(1);(2);(3)【解析】【分析】(1)据题意可设抛物线的解析式为,将点代入解出a,即可求出抛物线的解析式;(2)先求出直线AC的解析式,然后根据当时,点在直线上方,过点P作x轴的垂线与线段相交于点Q,可将分别代入和得,从而得出PQ的代数式,从而可求出m的值;(3)由题意可得,根据,可求出,连接,过B作的垂线交抛物线于点D,交于点H,可得,根据,可得与关于的垂直平分线对称,即关于抛物线的对称轴对称,即点D与点C关于抛物线的对称轴对称,从而可求出点D的坐标【详解】解:(1)据题意可设抛物线的解析式为,将点代入,可得抛物线的解析式为;(2)设直线AC的解析式为:,将、代入得,解得,直线的解析式:,当时,点在直线上方,过点P作x轴的垂线与线段相交于点Q,将分别代入和得,当且仅当时,取得最大值,此时最大,;(3)由、得,连接,过B作的垂线交抛物线于点D,交于点H,则,与关于的垂直平分线对称,即关于抛物线的对称轴对称,点D与点C关于抛物线的对称轴对称,又,点D的坐标为(-2,3)【点睛】本题是二次函数的综合题,考查二次函数的性质,求一次函数解析式,结合题意,正确添加辅助线,灵活运用知识点是解题关键37(2020·山西中考真题)综合与探究如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点直线与抛物线交于,两点,与轴交于点,点的坐标为(1)请直接写出,两点的坐标及直线的函数表达式;(2)若点是抛物线上的点,点的横坐标为,过点作轴,垂足为与直线交于点,当点是线段的三等分点时,求点的坐标;(3)若点是轴上的点,且,求点的坐标【答案】(1),直线的函数表达式为:;(2)当点是线段的三等分点时,点的坐标为或;(3)点的坐标为或【解析】【分析】(1)令可得两点的坐标,把的坐标代入一次函数解析式可得的解析式;(2)根据题意画出图形,分别表示三点的坐标,求解的长度,分两种情况讨论即可得到答案;(3)根据题意画出图形,分情况讨论:如图,当点在轴正半轴上时,记为点过点作直线,垂足为再利用相似三角形与等腰直角三角形的性质,结合勾股定理可得答案,如图,当点在轴负半轴上时,记为点过点作直线,垂足为,再利用相似三角形与等腰直角三角形的性质,结合勾股定理可得答案【详解】解:(1)令 ,设直线的函数表达式为:,把代入得: 解得: 直线的函数表达式为:(2)解:如图,根据题意可知,点与点的坐标分别为,分两种情况:当时,得解得:,(舍去)当时,点的坐标为当时,得解得:,(舍去)当时,点的坐标为当点是线段的三等分点时,点的坐标为或(3)解:直线与轴交于点,点坐标为分两种情况:如图,当点在轴正半轴上时,记为点过点作直线,垂足为则,即又,连接,点的坐标为,点的坐标为,轴,点的坐标为如图,当点在轴负半轴上时,记为点过点作直线,垂足为,则,即又,由可知,点的坐标为 点的坐标为或【点睛】本题考查的是二次函数与轴的交点坐标,利用待定系数法求一次函数的解析式,平面直角坐标系中线段的长度的计算,同时考查了相似三角形的判定与性质,等腰直角三角形的性质,勾股定理的应用,特别是分类讨论的数学思想,掌握以上知识是解题的关键38(2020·陕西中考真题)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后继续生长大约多少天,开始开花结果?【答案】(1);(2)这种瓜苗移至大棚后继续生长大约18天,开始开花结果【解析】【分析】(1)分段函数,利用待定系数法解答即可;(2)利用(1)的结论,把y80代入求出x的值即可解答【详解】解:(1)当0x15时,设ykx(k0),ykx(k0)的图象

    注意事项

    本文(专题25一次函数(1)-2020年全国中考数学真题分项汇编(第02期全国通用)(解析版)(,)(,).doc)为本站会员(秦**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开