欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高考数学总复习:圆锥曲线中的热点问题.doc

    • 资源ID:48555055       资源大小:476KB        全文页数:17页
    • 资源格式: DOC        下载积分:11金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高考数学总复习:圆锥曲线中的热点问题.doc

    第3讲圆锥曲线中的热点问题1 直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程若>0,则直线与椭圆相交;若0,则直线与椭圆相切;若<0,则直线与椭圆相离(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2bxc0(或ay2byc0)若a0,当>0时,直线与双曲线相交;当0时,直线与双曲线相切;当<0时,直线与双曲线相离若a0时,直线与渐近线平行,与双曲线有一个交点(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2bxc0(或ay2byc0)当a0时,用判定,方法同上当a0时,直线与抛物线的对称轴平行,只有一个交点2 有关弦长问题有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|x2x1|或|P1P2|y2y1|,其中求|x2x1|与|y2y1|时通常使用根与系数的关系,即作如下变形:|x2x1|,|y2y1|.(2)当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式)3 弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算考点一圆锥曲线的弦长及中点问题例1已知椭圆G:1(a>b>0)的离心率为,右焦点(2,0),斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(3,2)(1)求椭圆G的方程;(2)求PAB的面积解(1)由已知得c2,.解得a2,又b2a2c24.所以椭圆G的方程为1.(2)设直线l的方程为yxm.由得4x26mx3m2120.设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB中点为E(x0,y0),则x0,y0x0m;因为AB是等腰PAB的底边,所以PEAB.所以PE的斜率k1.解得m2.此时方程为4x212x0.解得x13,x20.所以y11,y22.所以|AB|3.此时,点P(3,2)到直线AB:xy20的距离d,所以PAB的面积S|AB|·d. 解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题涉及弦中点的问题常常用“点差法”解决,往往会更简单 椭圆y21的弦被点平分,则这条弦所在的直线方程是_答案2x4y30解析设弦的两个端点为A(x1,y1),B(x2,y2),则x1x21,y1y21.A,B在椭圆上,y1,y1.(y1y2)(y1y2)0,即,即直线AB的斜率为.直线AB的方程为y,即2x4y30.考点二圆锥曲线中的定值、定点问题例2已知椭圆C:1经过点(0,),离心率为,直线l经过椭圆C的右焦点F交椭圆于A、B两点,点A、F、B在直线x4上的射影依次为D、K、E.(1)求椭圆C的方程;(2)若直线l交y轴于点M,且,当直线l的倾斜角变化时,探求的值是否为定值?若是,求出的值;否则,说明理由;(3)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由 (1)待定系数法;(2)用直线的斜率为参数建立直线方程,代入椭圆方程消y后可得点A,B的横坐标的关系式,然后根据向量关系式,把,用点A,B的横坐标表示出来,只要证明的值与直线的斜率k无关即证明了其为定值,否则就不是定值;(3)先根据直线l的斜率不存在时的特殊情况,看两条直线AE,BD的交点坐标,如果直线AE,BD相交于定点的话,这个特殊位置时的交点就是这个定点,这样只要证明直线AE,BD都经过这个定点即证明了两直线相交于定点,否则两直线就不相交于定点解(1)依题意得b,e,a2b2c2,a2,c1,椭圆C的方程为1.(2)因直线l与y轴相交,故斜率存在,设直线l方程为yk(x1),求得l与y轴交于M(0,k),又F坐标为(1,0),设l交椭圆于A(x1,y1),B(x2,y2),由消去y得(34k2)x28k2x4k2120,x1x2,x1x2,又由,(x1,y1k)(1x1,y1),同理,.所以当直线l的倾斜角变化时,直线的值为定值.(3)当直线l斜率不存在时,直线lx轴,则ABED为矩形,由对称性知,AE与BD相交于FK的中点N,猜想,当直线l的倾斜角变化时,AE与BD相交于定点N,证明:由(2)知A(x1,y1),B(x2,y2),D(4,y1),E(4,y2),当直线l的倾斜角变化时,首先证直线AE过定点,lAE:yy2(x4),当x时,yy2·0.点N在直线lAE上同理可证,点N也在直线lBD上当直线l的倾斜角变化时,直线AE与BD相交于定点. (1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关在这类试题中选择消元的方向是非常关键的(2)由直线方程确定定点,若得到了直线方程的点斜式:yy0k(xx0),则直线必过定点(x0,y0);若得到了直线方程的斜截式:ykxm,则直线必过定点(0,m) (2013·陕西)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是PBQ的角平分线,证明:直线l过定点(1)解如图,设动圆圆心为O1(x,y),由题意,得|O1A|O1M|,当O1不在y轴上时,过O1作O1HMN交MN于H,则H是MN的中点,|O1M|,又|O1A|,化简得y28x(x0)又当O1在y轴上时,O1与O重合,点O1的坐标为(0,0)也满足方程y28x,动圆圆心的轨迹C的方程为y28x.(2)证明由题意,设直线l的方程为ykxb(k0),P(x1,y1),Q(x2,y2),将ykxb代入y28x中,得k2x2(2bk8)xb20.其中32kb64>0.由根与系数的关系得,x1x2,x1x2,因为x轴是PBQ的角平分线,所以,即y1(x21)y2(x11)0,(kx1b)(x21)(kx2b)(x11)0,2kx1x2(bk)(x1x2)2b0将,代入得2kb2(kb)(82bk)2k2b0,kb,此时>0,直线l的方程为yk(x1),即直线l过定点(1,0)考点三圆锥曲线中的最值范围问题例3(2013·浙江)如图,点P(0,1)是椭圆C1:1(a>b>0)的一个顶点,C1的长轴是圆C2:x2y24的直径l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求ABD面积取最大值时直线l1的方程解(1)由题意得所以椭圆C1的方程为y21.(2)设A(x1,y1),B(x2,y2),D(x0,y0)由题意知直线l1的斜率存在,不妨设其为k,则直线l1的方程为ykx1.又圆C2:x2y24,故点O到直线l1的距离d,所以|AB|22.又l2l1,故直线l2的方程为xkyk0.由消去y,整理得(4k2)x28kx0,故x0.所以|PD|.设ABD的面积为S,则S·|AB|·|PD|,所以S,当且仅当k±时取等号所以所求直线l1的方程为y±x1. 求最值及参数范围的方法有两种:根据题目给出的已知条件列出一个关于参数的函数关系式,将其代入由题目列出的不等式(即为消元),然后求解不等式;由题目条件和结论建立目标函数,进而转化为求函数的值域 已知椭圆C1与抛物线C2的焦点均在x轴上且C1的中心和C2的顶点均为坐标原点O,从每条曲线上的各取两个点,其坐标如下表所示:x14y3061(1)求C1,C2的标准方程;(2)过点A(m,0)作倾斜角为的直线l交椭圆C1于C,D两点,且椭圆C1的左焦点F在以线段CD为直径的圆的外部,求m的取值范围解(1)先判断出(,0)在椭圆上,进而断定点(1,3)和(4,6)在抛物线上,故(,1)在椭圆上,所以椭圆C1的方程为1,抛物线C2的方程为y29x.(2)设C(x1,y1),D(x2,y2),直线l的方程为y(xm),由消去y整理得2x22mxm260,由>0得4m28(m26)>0,即2<m<2,而x1x2,x1x2m,故y1y2(x1m)·(x2m)x1x2m(x1x2)m2.欲使左焦点F在以线段CD为直径的圆的外部,则·>0,又F(2,0),即·(x12,y1)·(x22,y2)x1x22(x1x2)y1y24>0.整理得m(m3)>0,即m<3或m>0.由可得m的取值范围是(2,3)(0,2)1 求轨迹与轨迹方程的注意事项(1)求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变(2)求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解(即轨迹上的某些点未能用所求的方程表示)检验方法:研究运动中的特殊情形或极端情形2 定点、定值问题的处理方法定值包括几何量的定值或曲线过定点等问题,处理时可以直接推理求出定值,也可以先通过特定位置猜测结论后进行一般性证明对于客观题,通过特殊值法探求定点、定值能达到事半功倍的效果3 圆锥曲线的最值与范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决最值与范围问题时常从以下五个方面考虑:利用判别式来构造不等关系,从而确定参数的取值范围;利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;利用基本不等式求出参数的取值范围;利用函数的值域的求法,确定参数的取值范围.设直线l:yk(x1)与椭圆x23y2a2(a>0)相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点(1)证明:a2>;(2)若2,求OAB的面积取得最大值时的椭圆方程(1)证明依题意,直线l显然不平行于坐标轴,故yk(x1)可化为xy1.将xy1代入x23y2a2,消去x,得y21a20,由直线l与椭圆相交于两个不同的点,得4(1a2)>0,整理得a2>3,即a2>.(2)解设A(x1,y1),B(x2,y2)由,得y1y2,因为2,得y12y2,代入上式,得y2.于是,OAB的面积S|OC|·|y1y2|y2|.其中,上式取等号的条件是3k21,即k±.由y2,可得y2±.将k,y2及k,y2这两组值分别代入,均可解出a25.所以,OAB的面积取得最大值的椭圆方程是x23y25.(推荐时间:70分钟)一、选择题1 已知方程1(kR)表示焦点在x轴上的椭圆,则k的取值范围是()Ak<1或k>3 B1<k<3Ck>1 Dk<3答案B解析若椭圆焦点在x轴上,则,解得1<k<3.选B.2 ABC的顶点A(5,0)、B(5,0),ABC的内切圆圆心在直线x3上,则顶点C的轨迹方程是 ()A.1 B.1C.1(x>3) D.1(x>4)答案C解析如图|AD|AE|8,|BF|BE|2,|CD|CF|,所以|CA|CB|826.根据双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,方程为1(x>3)3 设M(x0,y0)为抛物线C:x28y上一点,F为抛物线C的焦点,以F为圆心,|FM|为半径的圆和抛物线的准线相交,则y0的取值范围是()A(0,2) B0,2C(2,) D2,)答案C解析依题意得:F(0,2),准线方程为y2,又以F为圆心,|FM|为半径的圆和抛物线的准线相交,且|FM|y02|,|FM|>4,即|y02|>4,又y00,y0>2.4 若点O和点F分别为椭圆1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为()A2 B3 C6 D8答案C解析设P(x0,y0),则1,即y3,又因为F(1,0),所以·x0·(x01)yxx03(x02)22,又x02,2,即·2,6,所以(·)max6.5 已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F1、F2,且两条曲线在第一象限的交点为P,PF1F2是以PF1为底边的等腰三角形,若|PF1|10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是()A(0,) B(,)C(,) D(,)答案B解析设椭圆与双曲线的半焦距为c,PF1r1,PF2r2.由题意知r110,r22c,且r1>r2,2r2>r1,2c<10,2c2c>10,<c<51<<4,e2;e1.e1·e2>.二、填空题6 直线ykx1与椭圆1恒有公共点,则m的取值范围是_答案m1且m5解析方程1表示椭圆,m>0且m5.直线ykx1恒过(0,1)点,要使直线与椭圆总有公共点,应有:1,m1,m的取值范围是m1且m5.7 设F1、F2为椭圆y21的左、右焦点,过椭圆中心任作一直线与椭圆交于P,Q两点,当四边形PF1QF2面积最大时,1·2的值等于_答案2解析易知当P,Q分别在椭圆短轴端点时,四边形PF1QF2面积最大此时,F1(,0),F2(,0),不妨设P(0,1),1(,1),2(,1),1·22.8 已知抛物线方程为y24x,直线l的方程为xy40,在抛物线上有一动点P到y轴的距离为d1,P到直线l的距离为d2,则d1d2的最小值为_答案1解析过点P作抛物线的准线的垂线,垂足为A,交y轴于B,由抛物线方程为y24x得焦点F的坐标为(1,0),准线为x1,则由抛物线的定义可得d1d2|PA|AB|d2|PF|1d2,|PF|d2大于或等于焦点F点P到直线l,即|PF|d2的最小值为,所以d1d2的最小值为1.9 (2013·安徽)已知直线ya交抛物线yx2于A,B两点若该抛物线上存在点C,使得ACB为直角,则a的取值范围为_答案1,)解析以AB为直径的圆的方程为x2(ya)2a,由得y2(12a)ya2a0.即(ya)y(a1)0,由已知解得a1.三、解答题10已知直线x2y20经过椭圆C:1(ab0)的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线l:x分别交于M,N两点(1)求椭圆C的方程;(2)求线段MN的长度的最小值解(1)如图,由题意得椭圆C的左顶点为A(2,0),上顶点为D(0,1),即a2,b1.故椭圆C的方程为y21.(2)直线AS的斜率显然存在且不为0,设直线AS的方程为yk(x2)(k0),解得M(,),且将直线方程代入椭圆C的方程,得(14k2)x216k2x16k240.设S(x1,y1),由根与系数的关系得(2)·x1.由此得x1,y1,即S(,)又B(2,0),则直线BS的方程为y(x2),联立直线BS与l的方程解得N(,)|MN|2.当且仅当,即k时等号成立,故当k时,线段MN的长度的最小值为.11在平面直角坐标系中,点P(x,y)为动点,已知点A(,0),B(,0),直线PA与PB的斜率之积为.(1)求动点P的轨迹E的方程;(2)过点F(1,0)的直线l交曲线E于M,N两点,设点N关于x轴的对称点为Q(M、Q不重合),求证:直线MQ过x轴上一定点(1)解由题知:·.化简得y21(y0)(2)证明方法一设M(x1,y1),N(x2,y2),Q(x2,y2),l:xmy1,代入y21(y0)整理得(m22)y22my10.y1y2,y1y2,MQ的方程为yy1(xx1),令y0,得xx1my1112.直线MQ过定点(2,0)方法二设M(x1,y1),N(x2,y2),Q(x2,y2),l:yk(x1),代入y21(y0)整理得(12k2)x24k2x2k220,x1x2,x1x2,MQ的方程为yy1(xx1),令y0,得xx1x12.直线MQ过定点(2,0)12(2013·课标全国)已知圆M:(x1)2y21,圆N:(x1)2y29,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A、B两点,当圆P的半径最长时,求|AB|.解(1)设圆P的半径为r,则|PM|1r,|PN|3r,|PM|PN|4>|MN|,P的轨迹是以M、N为焦点的椭圆,左顶点除外,且2a4,2c2,a2,c1,b2a2c23.P的轨迹曲线C的方程为1(x2)(2)由(1)知:2r(|PM|PN|)2|MN|24,圆P的最大半径为r2.此时P的坐标为(2,0)圆P的方程为(x2)2y24.当l的方程为x0时,|AB|2,设l的方程为ykxb(kR),解之得:或.l的方程为yx,yx.联立方程化简:7x28x80x1x2,x1x2,|AB|.初高中数学交流群 群号 681387130

    注意事项

    本文(高考数学总复习:圆锥曲线中的热点问题.doc)为本站会员(小****库)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开