湖南省岳阳市第一中学高考适应性考试数学试卷含解析.doc
-
资源ID:48823107
资源大小:1.80MB
全文页数:18页
- 资源格式: DOC
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖南省岳阳市第一中学高考适应性考试数学试卷含解析.doc
2021-2022高考数学模拟试卷含解析考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知向量,则向量与的夹角为( )ABCD2的展开式中的系数为( )ABCD3若复数(是虚数单位),则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限4若实数x,y满足条件,目标函数,则z 的最大值为()AB1C2D05己知四棱锥中,四边形为等腰梯形,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为( )ABCD6若函数的图象过点,则它的一条对称轴方程可能是( )ABCD7已知函数,若方程恰有三个不相等的实根,则的取值范围为( )ABCD8已知集合A,B=,则AB=ABCD9己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是( )ABCD10已知,是球的球面上四个不同的点,若,且平面平面,则球的表面积为( )ABCD11椭圆的焦点为,点在椭圆上,若,则的大小为( )ABCD12函数的图象可能是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知椭圆:的左,右焦点分别为,过的直线交椭圆于,两点,若,且的三边长,成等差数列,则的离心率为_.14已知向量,满足,则向量在的夹角为_.15已知,则与的夹角为 .16函数的单调增区间为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)己知,.(1)求证:;(2)若,求证:.18(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)设直线与曲线相交于两点,的顶点也在曲线上运动,求面积的最大值.19(12分) 选修4-5:不等式选讲:已知函数.(1)当时,求不等式的解集;(2)设,且的最小值为.若,求的最小值.20(12分)已知函数,()当时,证明;()已知点,点,设函数,当时,试判断的零点个数21(12分)已知.(1)当时,求不等式的解集;(2)若,证明:.22(10分)已知在等比数列中,.(1)求数列的通项公式;(2)若,求数列前项的和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】求出,进而可求,即能求出向量夹角.【详解】解:由题意知,. 则 所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式 进行计算.2C【解析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.3A【解析】将 整理成的形式,得到复数所对应的的点,从而可选出所在象限.【详解】解:,所以所对应的点为在第一象限.故选:A.【点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把 当成进行计算.4C【解析】画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为 故答案选C【点睛】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.5A【解析】根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心也在过的外心面的垂线上,从而找到球心,再根据已知量求解即可.【详解】依题意如图所示:取的中点,则是等腰梯形外接圆的圆心,取是的外心,作平面平面,则是四棱锥的外接球球心,且,设四棱锥的外接球半径为,则,而,所以,故选:A.【点睛】本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题.6B【解析】把已知点坐标代入求出,然后验证各选项【详解】由题意,或,不妨取或,若,则函数为,四个选项都不合题意,若,则函数为,只有时,即是对称轴故选:B【点睛】本题考查正弦型复合函数的对称轴,掌握正弦函数的性质是解题关键7B【解析】由题意可将方程转化为,令,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,.因为,式两边同除以,得.所以方程有三个不等的正实根.记,则上述方程转化为.即,所以或.因为,当时,所以在,上单调递增,且时,.当时,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.8A【解析】先解A、B集合,再取交集。【详解】,所以B集合与A集合的交集为,故选A【点睛】一般地,把不等式组放在数轴中得出解集。9B【解析】考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围.【详解】因为的图象上关于原点对称的点有2对,所以时,有两个不同的实数解.令,则在有两个不同的零点.又, 当时,故在上为增函数,在上至多一个零点,舍.当时,若,则,在上为增函数;若,则,在上为减函数;故,因为有两个不同的零点,所以,解得.又当时,且,故在上存在一个零点.又,其中.令,则,当时,故为减函数,所以即.因为,所以在上也存在一个零点.综上,当时,有两个不同的零点.故选:B.【点睛】本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题.10A【解析】由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案【详解】如图,取BC中点G,连接AG,DG,则,分别取与的外心E,F,分别过E,F作平面ABC与平面DBC的垂线,相交于O,则O为四面体的球心,由,得正方形OEGF的边长为,则,四面体的外接球的半径,球O的表面积为故选A【点睛】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题11C【解析】根据椭圆的定义可得,再利用余弦定理即可得到结论.【详解】由题意,又,则,由余弦定理可得.故.故选:C.【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.12A【解析】先判断函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】函数的定义域为,该函数为偶函数,排除B、D选项;当时,排除C选项.故选:A.【点睛】本题考查根据函数的解析式辨别函数的图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法得出结果,考查分析问题和解决问题的能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】设,根据勾股定理得出,而由椭圆的定义得出的周长为,有,便可求出和的关系,即可求得椭圆的离心率.【详解】解:由已知,的三边长,成等差数列,设,而,根据勾股定理有:,解得:,由椭圆定义知:的周长为,有,在直角中,由勾股定理,即:,离心率.故答案为:.【点睛】本题考查椭圆的离心率以及椭圆的定义的应用,考查计算能力.14【解析】把平方利用数量积的运算化简即得解.【详解】因为,所以,因为所以.故答案为:【点睛】本题主要考查平面向量的数量积的运算法则,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.15【解析】根据已知条件,去括号得:,16【解析】先求出导数,再在定义域上考虑导数的符号为正时对应的的集合,从而可得函数的单调增区间.【详解】函数的定义域为.,令,则,故函数的单调增区间为:.故答案为:.【点睛】本题考查导数在函数单调性中的应用,注意先考虑函数的定义域,再考虑导数在定义域上的符号,本题属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析(2)证明见解析【解析】(1)采用分析法论证,要证,分式化整式为,再利用立方和公式转化为,再作差提取公因式论证.(2)由基本不等式得,再用不等式的基本性质论证.【详解】(1)要证,即证,即证,即证,即证,即证,该式显然成立,当且仅当时等号成立,故.(2)由基本不等式得,当且仅当时等号成立.将上面四式相加,可得,即.【点睛】本题考查证明不等式的方法、基本不等式,还考查推理论证能力以及化归与转化思想,属于中档题.18(1):,:;(2)【解析】(1)由直线参数方程消去参数即可得直线的普通方程,根据极坐标方程和直角坐标方程互化的公式即可得曲线的直角坐标方程;(2)由即可得的底,由点到直线的距离的最大值为即可得高的最大值,即可得解.【详解】(1)由消去参数得直线的普通方程为,由得,曲线的直角坐标方程为;(2)曲线即,圆心到直线的距离,所以,又 点到直线的距离的最大值为,所以面积的最大值为.【点睛】本题考查了参数方程、极坐标方程和直角坐标方程的互化,考查了直线与圆的位置关系,属于中档题.19(1) (2)【解析】(1)当时,原不等式可化为,分类讨论即可求得不等式的解集;(2)由题意得,的最小值为,所以,由,得,利用基本不等式即可求解其最小值【详解】(1)当时,原不等式可化为,当时,不等式可化为,解得,此时;当时,不等式可化为,解得,此时;当时,不等式可化为,解得,此时,综上,原不等式的解集为.(2)由题意得, ,因为的最小值为,所以,由,得,所以 ,当且仅当,即,时,的最小值为.【点睛】本题主要考查了绝对值不等式问题,对于含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向20()详见解析;()1.【解析】()令,;则易得,即可证明;(),分, , 当时,讨论的零点个数即可【详解】解:( )令,;则令,易得在递减,在递增, ,在恒成立 在递减,在递增 ;( ) 点,点, , 当时,可知, , 在单调递增, 在上有一个零点, 当时, ,在恒成立, 在无零点 当时, 在单调递减, 在存在一个零点综上,的零点个数为1【点睛】本题考查了利用导数解决函数零点问题,考查了分类讨论思想,属于压轴题21 (1) (2)见证明【解析】(1) 利用零点分段法讨论去掉绝对值求解;(2) 利用绝对值不等式的性质进行证明.【详解】(1)解:当时,不等式可化为.当时,所以;当时,.所以不等式的解集是.(2)证明:由,得,又,所以,即.【点睛】本题主要考查含有绝对值不等式问题的求解,含有绝对值不等式的解法一般是使用零点分段讨论法.22(1)(2)【解析】(1)由基本量法,求出公比后可得通项公式;(2)求出,用裂项相消法求和【详解】解:(1)设等比数列的公比为又因为,所以解得(舍)或所以,即(2)据(1)求解知,所以所以【点睛】本题考查求等比数列的通项公式,考查裂项相消法求和解题方法是基本量法基本量法是解决等差数列和等比数列的基本方法,务必掌握