欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    七年级数学下册 7.2 二元一次方程组的解法 华东师大版.doc

    • 资源ID:48933198       资源大小:114KB        全文页数:10页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    七年级数学下册 7.2 二元一次方程组的解法 华东师大版.doc

    17.27.2二元一次方程组的解法二元一次方程组的解法第第 1 1 课时课时教学目标1使学生通过探索,逐步发现解方程组的基本思想是“消元”,化二元次方程组为一元一次方程。2使学生了解“代人消元法”,并掌握直接代入消元法。3通过代入消元,使学生初步理解把“未知”转化为“已知”,和复杂问题转化为简单问题的思想方法。重点、难点1重点;用代入法把二元一次方程组转化为一元一次方程。2难点:用代入法求出一个未知数值后,把它代入哪个方程求另一个未知数值较简便。教学过程一、复习1什么叫二元一次方程,二元一次方程组,二元一次方程组的解?2把 3x+y7 改写成用 x 的代数式表示 y 的形式。二、新授回顾上一节课 的问题 2。在问题 2 中,如果设应拆除旧校舍 xm2,建新校舍 ym2,那么根据题意可列出方程组。y-x=2000030%y=4x怎样求这个二元一次方程组的解呢?方程表明,可以把 y 看作 4x,因此,方程中的 y 也可以看着 4x,即将代人(得到一元一次方程,实际上此方程就是设应拆除旧校舍 xm2,所列的一元一次方程)。这样就二元转化为一元,把“未知”转化为“已知”。你能用同样的方法来解问题 1 中的二元一次方程组吗?让学生自己概括上面解法的思路,然后试着解方程组。对有困难的同学,教师加以引导。并总结出解方程的步骤。1.选取一个方程,将它写成用一个未知数表示另一个未知数,记作方程。2 把代人另一个方程,得一元一次方程。23解这个一元一次方程,得一个未知数的值。4把这个未知数的值代人,求出另一个未知数值,从而得到方程组的解。以上解法是通过“代人”消去一个未知数,将方程组转化为一元一次方程来解的,这种解法叫做代人消元法,简称代入法。三、巩固练习教科书第 27 页,练习。四、小结1解二元一次方程组的思路。2掌握代入消元法解二元一次方程组的一般步骤。五、作业1教科书第 32 页习题 72 题第 1 题。第第 2 2 课时课时教学目标1使学生进一步理解代人消元法的基本思想和代入法解题的一般步骤。2让学生在实践中去体会根据方程组未知数系数的特点,选择较为合理、简单的表示方法,将一个未知数表示另一个未知数。重点、难点1重点:熟练地用代人法解一般形式的二元一次方程组。2难点:准确地把二元一次方程组转化为一元一次方程。教学过程一、复习1方程组2x+5y=-2 如何求解?关键是什么?解题步骤是什么?x=8-3y2把方程 2x-7y8(1)写成用含 x 的代数式表示 y 的形式。(2)写成用含 y 的代数式表示 x 的形式。二、新授2x-7y=8例:解方程3x-8y-10=0分析:这两个方程中未知数的系数都不是 l,那么如何求解呢?消哪一个未知数呢?3如果将写成用一个未知数来表示另一个未知数,那么用 x 表示 y,还是用y 表示 x 好呢?(让学生自己探索、归纳)因为 x 的系数为正数,且系数也较小,所以应用 y 来表示 x 较好。尝试解答。教师板书解方程的过程。这里是消去 x,得关于 y 的一元二次方程,能否消去 y 呢?让学生试一试,然后通过比较,使学生明白本题消 x 较简单。三、巩固练习教科书第 28 页,练习 1、2(1)(2)四、小结对于一般形式的二元一次方程用代入法求解关键是选择哪一个方程变形,消什么元,选取的恰当往往会使 计算简单,而且不易出错,选取的原则是:1选择未知数的系数是 1 或l 的方程;2若未知数的系数都不是 1 或1,选系数的绝对值较小的方程,将要消的元用含另一个未知数的代数式表示,再把它代人没有变形的方程中去。这样就把二元一次方程组转化为一元一次方程了。对运算的结果养成检验的习惯。五、作业教科书第 28 页,第 2 题的(3)、(4)。第第 3 3 课时课时教学目标1使学生进一步理解解方程组的消元思想。2使学生了解加减法是消元法的又一种基本方法,并使他们会用加减法解一些简单的二元一次方程组。重点、难点1,重点:用加减法解二元一次方程组。2难点:两个方程相减消元时对被减的方程各项符号要做变号处理。教学过程一、复习1解二元一次方程组的基本思想是什么?42用代人法解方程组3x+5y=53x-4y=23学生口述解题过程,教师板书。二、新授对复习 2 的反思并引入新课。用代入法解二元一次方程的基本思想是消元,只有消去一个未知数,才能把二元转化为熟悉的一元方程求解,为了消元,除了代入法还有其他的方法吗?(让学生主动探求解法,适当时教师可作以下引导)观察方程组在这个方程组中,未知数 x 的系数有什么特点?怎样才能把这个未知数消去?你的根据是什么?这两个方程中未知数 x 的系数相同,都是 3,只要把这两个方程的左边与左边相减、右边与右边相减,就能消去 x 从而把它转化为一元一次方程。把方程两边分别减去方程的两边,相当于把方程的两边分别减去两个相等的整式。为了避免符号上的错误(3x+5y)-(3x-4y)=5-23板书示范时可以如下:3x+5y-3x+4y=-18解:把得9y18y=2把 y2 代入,得 3x+5(2)=5解得 x=5x5这结果与用代入法解的结果一样y=2也可以通过检验从上面的解答过程中,你发现了二元一次方程组的新解法吗?让学生自己概括一下。例 2.解方程组3x+7y=9 怎样解这个方程组呢?用什么方法消去一个未知数?先消哪个未知数比较方便?4x-7y=5+,得 7x=14 两个方程中,未知数 y 的系数是互为相反x=2数,而互为相反数的和为零,所以应把方程将 x=2 代入,得的两边分别加上方程的两边56+7y9y37x2y37以上两个例子是通过将两个方程相加(或相减),消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫加减消元法,简称加减法。三、巩固练习教科书第 29 页,练习 1、2。四、小结今天我们又学习了解二元一次方程组的另一种方法加减法,它是通过把两个方程两边相加(或相减)消去一个未知数,把二元一次方程组转化为一元一次方程。请同学们归纳一下,什么样的方程组用“代入法”,什么样的方程组用“加减法”。五、作业教科书第 29 页练习 3、4。第第 4 4 课时课时教学目标使学生了解用加减法解二元一次方程组的一般步骤,能熟练地用加减法解较复杂的二元一次方程组。重点、难点1重点:将方程组化成两个方程中的某一未知数的系数的绝对值相等。2难点:将方程组化成两个方程中的某一未知数的系数的绝对值相等。教学过程一、复习下列方程组用加减法可消哪一个元,如何消元,消元后的一元一次方程是什么?3x+4y-3.44x2y5.66x-4y5.27x2y7.7二、新授例 l.解方程组9x+2y=1563x+4y=10分析如果用加减法解,直接把两个方程的两边相减能消去一个未知数吗?如果不行,那该怎么办呢?当两个方程中某个未知数系数的绝对值相等时,可用加减法求解,你有办法将两个方程中的某个系数变相同或相反吗?方程中 y 的系数是方程中 y 系数的 2 倍,所以只要将2例 2解方程组3x4y1015x+6y42这个方程组中两个方程的 x,y 系数都不是整数倍。那么如何把其中一个未知数的系数变为绝对值相等呢?该消哪一个元比较简便呢?(让学生自主探索怎样适当地把方程变形,才能转化为例 3 或例 4 那样的情形。)分析:(1)若消 y,两个方程未知数 y 系数的绝对值分别为 4、6,要使它们变成 12(4与 6 的最小公倍数),只要3,2(2)若消 x,只要使工的系数的绝对值等于 15。(3与 5 的最小公倍数,因此只要3,2)请同学们用加减法解本节例 2 中的方程组。2x7y83x8y100做完后,并比较用加减法和代人法解,哪种方法方便?教师讲评:应先整理为一般式。三、巩固练习教科书第 31 页,练习 1.3。四、小结(教师说出条件部分,学生回答结论部分)。加减法解二元一次方程组,两方程中若有一个未知数系数的绝对值相等,可直接加减消元;若同一未知数的系数绝对值不等,则应选一个或两个方程变形,使一个未知数的系数的绝对值相等,然后再直接用加减法求解;若方程组比较复杂,应先化简整理。五、作业教科书第 31 页练习 2.4。第第 5 5 课时课时(习题课习题课)7教学目标1使学生进一步理解二元一次方程(组)的解的概念。2使学生能够根据题目特点熟练地选用代入法或加减法解二元一次方程组。教学过程一、复习1什么是二元一次方程,二元一次方程组以及它的解?2解二元一次方程组有哪两种方法?它们的实际是什么?3举例说明解二元一次方程组什么情况下用代人法,什么情况下用加减法?当方程组中两个方程的某个未知数的系数的绝对值为 l 或有一个方程的常数项是。时,用代人法;当两个方程中某人未知数的系数的绝对值相等或成整数倍时,用加减法。)二、课堂练习1方程 2x+393 与下面哪个方程所组成的方程组的解是x=3y1A41+6y=6Bx2y=5C3x4y4D以上都不对2方程组3x7y=7 的解是否满足方程 2x+9y55x2y=2满足,解法一,先求出方程组的解为x=1611把 x,y 值代入方y=-2911程 2x+9y=-5 的左边,左边=21611+3(-2911)=-5=右边,解法二,不用求解,因为方程2x+3y5,是方程组中的第二个方程减去第一个方程得到的,所以方程组的解必满足方程2x3y53解下列方程组应消哪个元,用哪一种方法较简便?(1)2x-3y=-5消 x,用代入法,3x=2y由得 x=2y/3 再代入(2)2x+3y=5消 x 用加减法,4x-2y=128(3)3x+2y-2=0整体代入,消 y,3x+2y+152x=25由得 3x+2y=2 代入4解方程组(1)6x+5z=253x+2z=10(2)x+13y-34=0 x-24y-33=112(3)x+y6+x-y10=3x-34y-33=1 探索简便方法:(1)可以用加减法,2,也可以用代人法,由得3xl02x,代人得2(102z)+5z25(2)原方程组先整理为4xy=2 除用加减法解外。3x4y=5 还可以用代入法解.(3)可以与(2)一样先把原方程组整理,也可以直接加减.5.用适当的方法解方程组(1)x3+y2=125x+7y=12(2)5x-2y=5015%x+6%y=5(3)2x-y2+1=x-y32x-3y=4三、作业教科书第 37 页复习题 l、2、。9第第 6 6 课时课时教学目标1使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用。2通过应用题的教学使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性,体会列方程组往往比列一元一次方程容易。3进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力。重点、难点、关键1、重、难点:根据题意,列出二元一次方程组。2、关键:正确地找出应用题中的两个等量关系,并把它们列成方程。教学过程一、复习我们已学习了列一元一次方程解决实际问题,大家回忆列方程解应用题的步骤,其中关键步骤是什么?审题;设未知数;列方程;解方程;检验并作答。关键是审题,寻找出等量关系在本节开头我们已借助列二元一次方程组解决了有 2 个未知数的实际问题。大家已初步体会到:对两个未知数的应用题列一次方程组往往比列一元一次方程要容易一些。二、新授例 l:某蔬菜公司收购到某种蔬菜 140 吨,准备加工后上市销售,该公司的加工能力是:每天精加工 6 吨或者粗加工 16 吨,现计划用 15 天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为 1000 元,精加工后为 2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?分析:解决这个问题的关键是先解答前一个问题,即先求出安排精加和粗加工的天数,如果我们用列方程组的办法来解答。可设应安排 x 天精加工,y 加粗加工,那么要找出能反映整个题意的两个等量关系。引导学生寻找等量关系。(1)精加工天数与粗加工天数的和等于 15 天。(2)精加工蔬菜的吨数与粗加工蔬菜的吨数和为 140 吨。指导学生列出方程。对于有困难的学生也可以列表帮助分析。10例 2:有大小两种货车,2 辆大车与 3 辆小车一次可以运货 15.50 吨,5 辆大车与 6 辆小车一次可以运货 35 吨。求:3 辆大车与 5 辆小车一次可以运货多少吨?分析:要解决这个问题的关键是求每辆大车和每辆小车一次可运货多少吨?如果设一辆大车每次可以运货 x 吨,一辆小车每次可以运货 y 吨,那么能反映本题意的两个等量头条是什么?指导学生分析出等量关系。(1)2 辆大车一次运货3 辆小车一次运货15.5(2)5 辆大车一次运货6 辆小车一次运货35根据题意,列出方程,并解答。教师指导。三、巩固练习教科书第 32 页练习 l、2、3。第 3 题:首先让学生明白什么叫充分利用这船的载重量与容量,让学生找出两个等量关系。四、小结列二元一次方程组解应用题的步骤。1审题,弄清题目中的数量关系,找出未知数,用 x、y 表示所要求的两个未知数。2找到能表示应用题全部含义的两个等量关系。3根据两个等量关系,列出方程组。4解方程组。5检验作答案。五、作业1教科书第 32 页,习题 7.2 第 2、3、4 题。

    注意事项

    本文(七年级数学下册 7.2 二元一次方程组的解法 华东师大版.doc)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开