欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年数学实验报告.doc

    • 资源ID:49069098       资源大小:1.33MB        全文页数:21页
    • 资源格式: DOC        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年数学实验报告.doc

    高等数学数学实验报告实验人员:院(系) _ _学号_姓名_ _实验地点:计算机中心机房实验一 空间曲线与曲面的绘制一、实验题目:(实验习题1-2)利用参数方程作图,做出由下列曲面所围成的立体图形:(1) 及xOy平面;(2) 及二、实验目的和意义1、利用数学软件Mathematica绘制三维图形来观察空间曲线和空间曲面图形的特点,以加强几何的直观性。2、学会用Mathematica绘制空间立体图形。 三、程序设计空间曲面的绘制作参数方程所确定的曲面图形的Mathematica命令为:ParametricPlot3Dxu,v,yu,v,zu,v,u,umin,umax,v,vmin,vmax,选项(1)(2) 四、程序运行结果(1)(2) 五、结果的讨论和分析1、通过参数方程的方法做出的图形,可以比较完整的显示出空间中的曲面和立体图形。2、可以通过mathematica软件作出多重积分的积分区域,使积分能够较直观的被观察。3、从(1)中的实验结果可以看出,所围成的立体图形是球面和圆柱面所围成的立体空间。4、从(2)中的实验结果可以看出围成的立体图形的上面曲面的方程是,下底面的方程是z=0,右边的平面是。实验一 空间曲线与曲面的绘制一、实验题目:(实验习题1-3)观察二次曲面族的图形。特别注意确定k的这样一些值,当k经过这些值时,曲面从一种类型变成了另一种类型。二、实验目的和意义1. 学会利用Mathematica软件绘制三维图形来观察空间曲线和空间曲线图形的特点。2. 学会通过表达式辨别不同类型的曲线。三、程序设计 这里为了更好地分辨出曲线的类型,我们采用题目中曲线的参数方程来画图,即输入代码:ParametricPlot3Dr*Cost,r*Sint,r2+ k*r2*Cost*Sint,t, 0, 2*Pi, r, 0, 1,PlotPoints -> 30式中k选择不同的值:-4到4的整数带入。四、程序运行结果k=4:k=3:k=2:k=1:k=0:k=-1:k=-2:k=-3:k=-4:五、结果的讨论和分析k取不同值,得到不同的图形。我们发现,当|k|<2时,曲面为椭圆抛物面;当|k|=2时,曲面为抛物柱面;当|k|>2时,曲面为双曲抛物面。实验二 无穷级数与函数逼近一、实验题目:(实验习题2-2)改变例2中m及的数值来求函数的幂级数及观察其幂级数逼近函数的情况。二、实验目的和意义1.利用Mathematica显示级数部分和的变化趋势。 2.学会如何利用幂级数的部分和对函数进行逼近以及函数值的近似计算。 三、程序设计若函数能展开成x-的幂级数(这里不验证),则根据函数展开为幂级数的展开公式,其展开式为。因此首先定义的n阶导数的函数g(n, ),最后再构成和式即得的幂级数展开式。用Mathematica观察幂级数部分和逼近函数的情况。m=2,=2时输入如下命令:m=-2;fx_:=(1+x)m;x0=2;gn_,x0_:=Dfx,x,n/.xx0;sn_,x_:=Sum*(x-x0)k,k,0,n;t=Tablesn,x,n,20;p1=PlotEvaluatet,x,-1/2,1/2;p2=Plot(1+x)m, x,-1/2,1/2,PlotStyleRGBColor0,0,1;Showp1,p2四、程序运行结果从输出的图形观察展开的幂级数的部分和逼近函数的情况:五、结果的讨论和分析从图中可以看到,当n越大时,幂级数越逼近函数。实验二 无穷级数与函数逼近一、实验题目:(实验习题2-3)观察函数展成的傅里叶级数的部分和逼近的情况。二、实验目的和意义1.利用Mathematica显示级数部分和的变化趋势。 2. 学会展示傅里叶级数对周期函数的逼近情况。三、计算公式可以展开成傅里叶级数:,其中,四、程序设计输入代码:fx_ := Which-Pi <= x < 0, -x, 0 <= x < Pi, 1;an_ := Integrate-x*Cosn*x, x, -Pi, 0/Pi + IntegrateCosn*x, x, 0, Pi/Pi;bn_ := Integrate-x*Sinn*x, x, -Pi, 0/Pi + IntegrateSinn*x, x, 0, Pi/Pi;sx_, n_ :=a0/2+Sumak*Cosk*x + bk*Sink*x, k, 1, n;g1 = Plotfx, x, -2Pi, 2Pi, PlotStyle -> RGBColor0, 0, 1, DisplayFunction -> Identity; m = 18;Fori = 1, i <= m, i += 2,g2 = PlotEvaluatesx, i, x, -Pi, Pi, DisplayFunction -> Identity;Showg1, g2, DisplayFunction -> $DisplayFunction五、程序运行结果 六、结果的讨论和分析从图表可以看出,n越大逼近函数的效果越好,还可以注意到傅里叶级数的逼近是整体性的。实验三 最小二乘法一、实验题目:(实验习题3-2)一种合金在某种添加剂的不同浓度下进行实验,得到如下数据:浓度x10.015.020.025.030.0抗压强度y27.026.826.526.326.1已知函数y与x的关系适合模型:,试用最小二乘法确定系数a,b,c,并求出拟合曲线。二、实验目的和意义1. 学会利用最小二乘法求拟合曲线。2. 学会画数据点的散点图及拟合函数的图形,并将两个图画在同一坐标下。三、计算公式 根据最小二乘法,要求取最小值,令此函数对各个参数的偏导等于0,解n+1元的方程组便可求得这些参数的最小二乘解。四、程序设计输入代码:x = Table10.0 + 5.0*i, i, 0, 4;y = 27.0, 26.8, 26.5, 26.3, 26.1;xy = Tablexi, yi, i, 1, 5;qa_, b_, c_ := Sum(a + b*xi + c*xi2 - yi)2, i, 1, 5NSolveDqa, b, c, a = 0, Dqa, b, c, b = 0, Dqa, b, c, c = 0, a, b, ct1 = ListPlotxy, PlotStyle -> PointSize0.02, DisplayFunction -> Identity;fx_ := 27.56 + -0.0574286*x + 0.*x2;t2 = Plotfx, x, 5, 35, AxesOrigin -> 5, 25, DisplayFunction -> Identity;Showt1, t2, DisplayFunction -> $DisplayFunction五、程序运行结果首先得到a,b,c三个值:a -> 27.56, b -> -0.0574286, c -> 0.然后得到同一坐标系下的数据点散点图及拟合函数的图形:六、结果的讨论和分析 观察a,b,c的值以及图像可以发现,二次方项的系数非常小,而所得的图像也非常接近于直线。实验三 最小二乘法一、实验题目:(实验习题3-3)在研究化学反应速度时,得到下列数据:369121518212457.641.931.022.716.612.28.96.5其中表示实验中作记录的时间,表示在相应时刻反应混合物中物质的量,试根据这些数据建立经验公式。二、实验目的和意义1. 学会利用最小二乘法求拟合曲线。2. 学会由实际经验或相关的学科理论,能够提供拟合函数的可取类型,通过适当的变量代换将拟合函数线性化,建立经验公式。三、计算公式在许多场合下,拟合函数不具有线性形式,但是由实际经验或相关的学科理论,能够提供拟合函数的可取类型,而且可以通过适当的变量代换将拟合函数线性化,同样可以建立经验公式。模型可以用变量替换将函数化为线性函数:。四、程序设计输入代码:(1)生成数据并作图观察t1=3,6,9,12,15,18,21,24;y1=57.6,41.9,31.0,22.7,16.6,12.2,8.9,6.5;data1=Transposet1,y1;d2=ListPlotdata1,PlotStyle->RGBColor0,0,1,PointSize0.02;(2)确定回归函数的类型logy=Logy1;data2=Transposet1,logy;d3=ListPlotdata2,PlotStyle->RGBColor0,0,1,PointSize 0.02 ;(3)对Lny数据进行最小二乘线性拟合ly=Fitdata2,1,x,xy=Exply/Factor(4)绘图观察回归曲线的拟合效果g=Ploty,x,1,25,PlotStyle->RGBColor1.000,0.000,0.502;Showg, d2;五、程序运行结果六、结果的讨论和分析 在实际应用中,可以根据实际背景、理论分析、型值点形态等因素选择适当的拟合曲线。

    注意事项

    本文(2022年数学实验报告.doc)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开