煤矿开采学课程设计(DOC30页).docx
河南工程学院煤矿开采学课程设计*矿*采(带)区120万吨/年生产能力设计学生姓名: 李 想 学 号: 2013201033473 学 院: 安全工程学院 专业班级: 煤矿开采技术1332 专业课程: 煤矿开采学 指导教师: 赵新涛 2015 年1月11日煤矿开采学课程设计任务书题目 *矿*采(带)区120万吨/年生产能力设计 专业 煤矿开采技术 班级 1332 一 设计题目*矿*采(带)区120万吨/年生产能力设计。 二 设计时间2014年12月29日2015年1月11日 三 设计资料详见本课程设计大纲。四 完成的任务(1)设计内容:采(带)区巷道布置、采煤工艺设计、设计图纸。(2)提交课程设计报告。五 成果要求文字格式要求主标题:三号字、居中、宋体、加黒,段后为自动。 正文:全文宋体、小四号字、段前段后0、行间距1.5,首行缩进2个字符(包括各级标题)。编码:采用中式“一、二、三、(一)(二)(三)123(1)(2)(3)”编码形式,不得采用自动生成格式。其中“一、(一)”做为标题,加黒,单独成行。“1(1)”可以做标题,也可以不做标题,如果做标题,需单独成行,做还是不做标题,均不需要加黒。图表:图表文字及说明等均采用五号宋体。表格要有表头(表头包括表号、表名),表头在表的上面并居中加黑。图要有图号、图名,在图的下面并居中,不需加黒。公式:采用公式编辑器编写,要规范,必要时要编号,编号要写在公式的尾部。装订:A4纸打印,加封面,左侧装订。封面:封面装订,也可以粘贴在学生“课程作业”的档案袋表面。图纸要求(需要制图的情况)本设计绘制一张大图(二号图纸) :采(带)区巷道布置平面图和(1:2000)剖面图(1:2000)。设计图纸四周各留20mm的边框线,右下角留出标题栏。凡设计图中已有内容,说明书中都可以不画。指导教师签名: 2015年 1月 11日 目 录前言····································2第一章 采区巷道布置······························4第一节 采区储量与服务年限···························4第二节 采区内的再划分·····························6第三节 确定采区内准备巷道布置及生产系统···················7第四节 采区煤仓设计······························10第二章  采煤工艺设计····························15第一节 采煤工艺方式的确定··························15第二节 工作面合理长度的确定·························20第三节 采煤工作面循环作业图表的编制····················21小 结·······································24参考文献·····································25   前 言课程设计内容1、设计题目的一般条件(假象矿井)某矿第一开采水平上山某采(带)区自下而上开采K1、K2和 K3煤层,煤层厚度、层间距及顶底板岩性见综合柱状图。该采(带)区走向长度2500米,倾斜长度1000米,采(带)区内各煤层埋藏平稳,地质构造简单,无断层,K1和K2煤层属简单结构煤层,硬度系数 f=2,各煤层瓦斯涌出量也较小。设计矿井的地面标高为+30米,煤层露头为-30米。第一开采水平为该采(带)区服务的一条运输大巷布置在K3煤层底版下方25米处的稳定岩层中,为满足该采(带)区生产系统所需的其余开拓巷道可根据采煤方法不同由设计者自行决定。2、设计题目的煤层倾角条件煤层倾角条件:煤层平均倾角为25°1设计采(带)区综合柱状图柱 状厚度(m)岩 性 描 述 8.60灰色泥质页岩,砂页岩互层-8.40泥质细砂岩,碳质页岩互层-0.20碳质页岩,松软 6.9K1煤层,=1.30t/m3-4.20灰色砂质泥岩,细砂岩互层,坚硬-7.80灰色砂质泥岩 3.0K2煤层-4.60薄层泥质细砂岩,稳定················3.20灰色细砂岩,中硬、稳定 2.20K3煤层,煤质中硬,=1.30t/m3。3.20灰白色粗砂岩、坚硬、抗压强度6080Mps。24.68灰色中、细砂岩互层第一章.采区巷道布置第一节采区储量与服务年限1因采区生产能力选定为120万t/a2采区的工业储量、设计可采储量 (1)采区的工业储量 Zc=H×L×M× (公式1-1) 式中: Zc-采区工业储量,万t; H- 采区倾斜长度,1000m; L- 采区走向长度,2500m; - 煤的容重 ,1.30t/m3; M- 煤的厚度 ,K1,K2,K3煤层厚度分别为M1=6.9米,M2=3.0米,M3=2.2米;则Zc1=1000×2500×6.9×1.3=2242.5万tZc2=1000×2500×3.0×1.3=975万tZc3=1000×2500×2.2×1.3=715万tZc= Zc1+Zc2+Zc3=3932.5万t (2)设计可采储量 计算永久煤柱损失 P=S×2×L +B×2×(H -S×2)×M× (公式1-2) S-采区上下边界煤柱宽度 B-采区左右边界煤柱宽度 H-采区倾斜长度,1000m; L-采区走向长度,2500m; - 煤的容重,1.30t/m3; M- 煤的厚度,K1,K2,K3煤层厚度分别为M1=6.9米,M2=3.0米,M3=2.2米; K1,K2,K3煤层永久煤柱损失分别为P1,P2,P3 则P1=30×2×2500+20×2×(1000-30×2)×6.9×1.3=168.28万tP2=30×2×2500+20×2×(1000-30×2)×3.0×1.3=73.16万tP3=30×2×2500+20×2×(1000-30×2)×2.2×1.3=53.65万tP=P1+P2+P3=295.09万t设计可采储量Z=(Zc-P)×C (公式1-3)式中 Z- 设计可采储量, 万t; Zc- 工业储量,万t; P- 永久煤柱损失量,万t;C- 采区采出率,K1为厚煤层可取75%,K2,K3为中厚煤层取80%。则Z1=( Zc1-P1)×C1 =(2242.5-168.28)×0.8=1659.38万tZ2=( Zc2-P2)×C2 =(975-73.16)×0.9=811.66万tZ3=( Zc3-P3)×C3 =(715-53.65)×0.9=595.22万tZ=Z1+ Z2+ Z3=3066.26万t (3)采区服务年限 T= Z/A×K (公式1-4)式中 T- 采区服务年限,a; A- 采区生产能力,120万t; Z- 设计可采储量,万t; K-储量备用系数,取1.4。T= Z/A×K=4080.7 /(120×1.4)=24.2a (4)、验算采区回采率 C=(Zc-p)/Zc-(公式1-5)式中 C-采区回采率,% ; Zc -煤层的工业储量,万t ; P- 煤层的永久煤柱损失,万t; C1=(Zc1-P1)/Zc1=(2242.5-168.28)/2242.5 =92.50% > 75%满足要求.C1=(Zc2-P2)/Zc2=(975-73.16)/ 975 =92.50% > 80%满足要求C1=(Zc3-P3)/Zc3=(715-53.65)/ 715=92.50% > 80%满足要求第二节 采区内的再划分1、 确定工作面长度确定工作面长度主要考虑的因素有地质条件,煤层厚度,设备性能,巷道布置等,该采区内煤层埋藏平稳,地质构造简单,无断层,煤层瓦斯涌出量较小,且采煤工艺选取的是较先进的综采,在煤矿生产实践中,工作面长度有加长趋势,考虑到设备选型及技术方面的因素综采工作面长度为150240m。、确定煤柱尺寸为使巷道保持良好状态,防止采空区矸石冒落及保证生产安全,需在采区四周留有一定范围的采区煤柱,煤柱尺寸大小与煤层上的压力及煤体本身强度有关,综合已知条件及所选用的采煤方法,在采区左右边界各留20m的边界煤柱,上部留30m防水煤柱,下部留30m护巷煤柱,采区内不再留这类煤柱。, 确定工作面长度有上可知,煤层倾向共有1100-60=1040m的长度,走向长度3000-40=2960m。地质构造简单,煤层赋存条件较好,瓦斯涌出量小。巷道宽度为4m4.5m,本采区选取4.5m,且采区生产能力为120万t/a,选定5个区段,采用沿空掘巷方式,巷道间留较小煤柱,取5米。故工作面长度为: L1=(1000-30×2-5×4-10×4.5)/5=175 m2、确定采区内工作面数目回采工作面是沿倾斜方向布置,沿走向推进,采用走向长壁法开采。工作面数目:N=(L-2S)/(L1+2L2) -(公式1-6)式中 L - 煤层倾斜方向长度(m); S - 采区边界煤柱宽度(m); L1 - 工作面长度(m);L2 - 回采巷道宽度,4.5m。 N=(1000-30×2)/(175+4.5×2) =5.11,取5.3、工作面生产能力Q = A/(T×1.1) -(公式1-7)式中 Q -工作面生产能力,万t ;A-采区生产能力,120万t/a ;T-每年正常工作日,330天。故 Qr = A/T×1.1 =120/(330×1.1)=3305.79t4、确定采区内同采工作面数及工作面接替顺序生产能力为120万t/a,且工作面生产能力为3305.79t。目前开采准备系统的发展方向是高产高效生产集中化,采用提高工作面单产,以一个工作面产量保证采区产量,所以定为采区5个区段工作面接替顺序,采用下行开采顺序 工作面接替顺序图区段1区段2区段3区段4区段5图.1-1布置一个综放工作面便可以满足生产设计的要求。煤层:区段1区段2区段3区段4区段5(说明:以上箭头表示方向为工作面推进顺序) 第三节 确定采区内准备巷道布置及生产系统1完善开拓巷道据已知条件,在第一开采水平为该采区服务的运输大巷布置在K3煤层底板下方25m的稳定岩层中。为了便于掘进及通风,减少煤柱损失提高经济效益,根据所给地质条件及系统所需,回风大巷亦布置在K3煤层底板下方25m的稳定岩层中,与运输大巷大水平间距相距1100×cos25°=996.9米。采区内有三层煤,采用联合布置,每一层都布置5个工作面,根据相关情况初步制定以下方案进行比较(由于三煤层在设计中相同,所以仅以K3煤层为例说明)2确定巷道布置系统及采区布置方案分析比较采区巷道布置系统根据所学习知识,可采用两条岩石上山,两条煤层上山或一煤一岩上山等布置形式,这里只对两条岩石上山和一煤一岩上山两种方案进行比较:方案一:两条岩石上山在距煤层底板15m处岩石中布置两条岩石上山,一条为运输上山,另一条为轨道上山,两上山层间距30米,在层为上保持相应高差,使其分别联结两翼的区段;平巷不交叉。通风路线:新风从阶段运输大巷采区主石门采区下部车场轨道上山中部甩车场区段轨道集中平巷区段联络巷道区段运输平巷工作面区段回风平巷回风石门阶段回风大巷。该方案的特点是:岩石工程量大,掘进费用高,联络石门长,工期长,但岩石巷道稳定,受干扰小,服务期限长,维护费用低,有利于通风,运输能力大。图1-2 方案一示意图 方案二:一煤一岩上山在距煤层底板15m处岩石中布置一条岩石运输上山,在煤层中布置另一条轨道上山。通风路线:新风从阶段运输大巷采区主石门采区下部车场轨道上山中部甩车场区段轨道集中平巷区段联络巷道区段运输平巷工作面区段回风平巷回风石门阶段回风大巷。该方案的特点是:节省了一条岩石上山,相对减少了岩石工程量,节约了成本,但轨道上山不易维护,维护费用高,服务期限短,需要保护煤柱。图1-3 方案二示意图经济技术比较:巷道硐室掘进费用表1-1 方案方案一方案二工程名称单价(元)工程量费用(万元)单价(元)工程量费用(万元)上山(m)15782×1000 315.61284157810001000128.40157.80合计  315.6286.2 巷道及硐室维护费表1-2 方案 方案一方案二工程名称单价(元)工程量费用(万元)单价(元)工程量费用(万元)上山(m)401000×20×216090401000×201000×2018080合计  160 260 费用汇总表表1-4 方案总费用方案一方案二掘进(万元)315.6286.2维护(万元)160260合计(万元)475.6546.2 两方案综合比较方案一方案二优 点两条上山均布置在演示中,岩石巷道稳定,受干扰小,服务期限长,维护费用低,有利于通风,运输能力大节省了一条岩石上山,相对减少了岩石工程量,节约成本缺 点岩石工程量大,掘进费用高,联络石门长,工期长轨道上山不易维护,维护费用高,服务期限短,需要保护煤柱费用(万元)475.6546.2有上表可知,选择双岩巷上山采区联合布置方式比较合理,巷道布置情况见采区巷道平面图、剖面图。3 确定工作面回采巷道布置方式分析:回采巷道的布置可采用单巷布置或双巷布置两种方法,有已知条件可知,该煤层地质构造简单,煤层赋存条件好,涌水量较小,瓦斯涌出量较小,直接顶较厚且易跨落,因此有利于综合机械化作业,可以充分发挥综采高产高效的优势。若采用单行布置,则巷道断面将达12平米以上,对巷道的维护和掘进比较困当,故选用双巷布置的形式,减小巷道断面面积,上一区段的运输巷道还可以作为下区段回风巷道使用。4.采区上下区段交替生产通风系统示意图采区内上、下区段相邻工作面交替期间同时生产时的通风系统,通风路线:新风从阶段运输大巷采区主石门采区下部车场轨道上山中部甩车场区段轨道集中平巷区段联络巷道区段运输平巷工作面区段回风平巷回风石门阶段回风大巷。5采区上下部车场参考采矿设计手册及课本,采区上部车场采用顺向单侧平车场,采区下部车场采用大巷装车通过式。 第四节 采煤中部甩车场路线设计参考网上资料,作如图设计1、斜面线路联接系统参数计算 该采区开采近距离煤层群,倾角为12°。铺设600mm轨距的线路,轨形为15kg/m,采用1t矿车单钩提升,每钩提升3个矿车,甩车场存车线设双轨道。斜面线路布置采用二次回转方式。 (1) 道岔选择及角度换算 由于是辅助提升故道岔均选择DK615-4-12(左)道岔。道岔参数为1=14°15,a1= a2=3340, b1= b2=3500。 斜面线路一次回转角1=14°15 斜面线路二次回转角=1+2=14°15+14°15=28°30 一次回转角的水平投影角1=arctan(tan1/cos)=14°4758(为轨道上山倾角16°) 二次回转角的水平投影角=arctan(tan/cos)=29°1734(为轨道上山倾角16°) 一次伪倾斜角=arcsin(sincos1)=arcsin(sin16°cos14°15)=15°2942 二次伪倾斜角=arcsin(sincos)=arcsin(sin16°cos28°30)=154°16(2)斜面平行线路联接点参数确定如图1-5:图1-5 斜面平行线路联接 本设计采用中间人行道,线路中心距S=1900mm,为简化计算,斜面联接点距中心距与线路中心距相同,曲线半径取R=9000mm,则各参数计算如下:B=Scot=1900×cot14°15=7481mmm=S/sin=1900/sin14°15=7719mmT=Rtan(/2)=9000×tan(14°15/2)=1125mmn=m-T=7719-1125=6594mmc=n-b=6594-3500=3094mmL=a+B+T=3340+7481+1125=11946mm(3)竖曲线相对位置 竖曲线相对参数: 高道平均坡度:ia=11,rg=arctania=3749 低道平均坡度:id=9,rd=arctanid=3056 低道竖曲线半径:Rd=9000mm 取高道竖曲线半径:Rg=20000mm 高道竖曲线参数: g=- rg=15°2942-3749=14°5153 hg= Rg(cosrg-cos)=20000(cos3749-cos15°2942)=725.71mm Lg= Rg(sin-sinrg)=20000(sin15°2942-sin3749)=5123.08mm Tg= Rg×tan(g/2)=20000×tan(14°5153/2)=2609.03mm Kg=Rg×g/57.3°=5188.38mm 低道竖曲线参数: d= rd=15°2942-3056=16°38 hd= Rd(cosrd-cos)=9000(cos3056-cos15°2942)=326.75mm Ld= Rd(sin-sinrd)=9000(sin15°2942sin3056)=2485.37mm Td= Rd×tan(d/2)=9000×tan(16°38/2)=1265.71mm Kd=Rd×d/57.3°=2514.75mm 最大高低差H: 由于是辅助提升,储车线长度按三钩计算,每钩提1t矿车3辆,故高低道储车线长度不小于3×3×2=18m,起坡点间距设为零,则有:H=18000×11+18000×9=360mm 竖曲线的相对位置: L1=(T-L)sin+msin+hg-hd+H=2358.83mm 两竖曲线下端点(起坡点)的水平距离为L2,则有L2= L1cos+ Ld- Lg=2358.83×cos15°2942+2485.37-5123.08=-364.61mm 负值表示低道起坡点超前与高道起坡点,其间距满足要求,说明S选取2000mm合适。(4)高低道存车线参数确定 闭合点O的位置计算如图1-6:图1-6 闭合点联接 设高差为X,则: tan rd=(X-X)/Lhg=0.009tan rg=(H-X)/Lhg=0.011X= L2×id=364.61×0.009=3.281mm将X带入则可得X=163.80mm,Lhg=17835.93mm(5)平曲线参数确定 取曲线外半径R1=9000mm 取曲线内半径R2=9000-1900=7100mm 曲线转角=14°4758 K1= R1/57.3°=9000×14°4758/57.3°=2324.52mm K2= R2/57.3°=7100×14°4758/57.3°=1833.79mm K= K1 -K2=2324.52-1833.79=490.73mm T1= R1 tan/2=1168.85mm T2= R2 tan/2=922.09mm (6)存车线长度 高道存车线长度为Lhg=17835.93mm;低道存车线长度Lhd=Lhg- L2=17835.93+364.61=18200.54mm;存车线处于曲线段处,高道存车线处于外曲线,外曲线和内曲线得弧长之差为 K= K1 -K2=2324.52-1833.79=490.73mm则有低道存车线得总长度为L=LhgK=17835.93+490.73=18326.66mm 具有自动下滑得长度为17835.93mm,平破长度为490.73mm,应在闭合点之前。 存车线直线段长度d: d=Lhd-C1-K2=18200.54-2000-1833.79=14366.75mm 在平曲线终止后接14366.75mm得直线段,然后接存车线第三道岔得平行线路联接点。 存车线单开道岔平行线路连接点长度Lk: 存车线单开道岔DK615-4-12,。则Lk=a+B+T=3340+7481+1125=11946mm (7)甩车场线路总平面轮廓尺寸及坡度: M2 =a×cos+(b+L+a+L1+Td)coscos+( Td+C1+ T1)cos+ T1+d+Lk =3340×cos16°+(3500+8606+3340+2358.83+1265.71)×cos15°2942×cos14°4758+(1265.71+2000+922.09)×cos14°4758+922.09+14366.25+11946=52262.07mm H2 =(b+L+a+L1+Td)cossin+( Td+C1+ T1)sin+S =(3500+3340+2358.83+1265.71)×cos15°2942×sin14°4758+(1265.71+2000+922.09)×sin14°4758+1900=7663.97mm (8)线路各点标高 设低道起坡点标高1=±0; 提车线2=1+hd=326.75mm 5=2+(L+L1)sin=326.75+(8606+2358.83)×sin15°2942=3256.05mm 车线 3=1+H=0+360=360mm 4=3+hg=360+725.71=1085.71mm 5=4+m×sin+T1×sin=1085.71+7719×sin14°16+ 1125×15°2942=3256.05mm 由计算结果可以看出提车线得5标高点与甩车线得5标高点相同,故标高闭合,满足设计要求。 轨起点6=5+(b+a)sin=3256.05+(3500+3340)×sin15°2942=5110.1mm第二章 采煤工艺设计 第一节 采煤工艺方式的确定1、 设置采煤工艺。选取K1煤层进行采煤工艺设计(K2,K3属中厚煤层,可选用综采一次采全厚方法进行开采,采煤工艺与K1层煤开采有相似之处,这里不再进行分析)。由于K1煤层厚度为6.9m,属于厚煤层,硬度系数f=2,结构简单,无断层,煤层平均倾角为25.故可采用技术条件先进的综合机械化采煤工艺,进行综采放顶煤开采。综采放顶煤工作面“三八”制作业形式,即两班采煤,一班准备。工作面回采工艺流程为:采煤机向上割煤、移架采煤机向下装煤推移刮板输送机斜切进刀推移刮板输送机。2、综采工作面的设备选用国产设备。根据煤层的实际情况,经查采矿设计手册,并对多种型号采煤机进行比较,选用采煤机。  MG2×160/710-AWD型电牵引采煤机(西安煤矿机械有限公司)产品用途及适用条件      MG2×160/710-AWD型电牵引采煤机,是一种多电机驱动,电机横向布置,全机载交流变频调速无链双驱动电牵引采煤机。机面高度853mm,适用于采高11002600mm,煤层倾角40°的煤层,综采或高档普采工作面。最大装机功率730kW,更换不同功率电机可派生出装机功率为710kW的采煤机。主要技术特征项    目数   据单   位1.最大计算生产能力800t/h2.采高1.12.6m3.装机功率2×2×160+2×30+7.5710kW4.供电电压1140v5.滚筒直径1100,1250,1400mm6.截深600mm7.牵引力400240kN8.牵引速度01016.8, 07.612.6m/min9.灭尘方式内外喷雾10.拖电缆方式自动拖缆11.主机外形尺寸11692×1985×853mm12.主机重量29t13.最大不可拆卸尺寸2800×950×520mm14.最大不可拆卸重量4.5t15.配套运输机槽宽630,730,764mm3、采煤与装煤(1)落煤方式及截深工作面每天推进度 V=Q/LMC。; (公式1-8)Q-采区生产能力,3305.79t;L - 工作面长度(m);- 煤的容重 ,1.30t/m3; M- 煤的厚度C-采区回采率,% ;V=3305.79/(195×6.9×1.3×0.93)=2.1m 采用综合机械化采煤,双滚筒采煤机直接落煤和装煤。选择采煤机的滚筒截深600mm,每天正规循环推进四刀,每个循环0.6m,可满足每天至少推进2.1米的要求。(2)进刀方式为提高煤炭采出率,选取端部斜切进刀不留三角煤的进刀方式。(3)采放比采煤机割煤高度为2.6m放煤高度平均为4.3m,采放比为1:1.65。(4)放顶步距割两刀放一次顶煤,放顶步距0.6×2=1.2m。(5)放煤方式单轮、间隔、多口放煤。这种方式丢煤少,混矸少,易于实现高产高效,是一种较好的放煤方式。4、运煤工作面采用可弯曲刮板输送机运煤,运输平巷采用转载机和胶带运输机运煤。(1) 刮板机型号SGZ764刮板输送机技术参数(郑州煤矿机械设备有限公司)设计长度(m)150200装机功率(kW)2×200315输送量(t/h)8001200中部槽中部槽尺寸(长×内宽×高)1500×722×275中板厚度(mm)3040底板厚度(mm)2030刮板链刮板链形式中双链圆环链规格26×92-C 或30×108-C链距120链速(m/s)1.01.2联轴节形式限矩摩擦离合器或联轴器紧链方式闸盘紧链或液压马达紧链卸载方式端卸采煤机牵引方式牵引轮与强力齿轨啮合齿轨节距126适用范围该系列输送机适用于缓倾斜、长度一般不大于<200米>的工作面。 2 转载机型号SZZ764系列转载机 (郑州煤矿机械集团有限公司) 型 号 项 目 SZZ764设计长度(m)5060装机功率(kW)132200输送量(t/h)10001200爬坡角度(°)10悬空段中部槽规格(mm)1500×722×609落地段中部槽规格(mm)1750×722×870刮板链刮板链形式中双链圆环链规格22×86-C、26×92-C链速(m/s)1.41.5联轴节形式限矩摩擦离合器、弹性联轴器紧链方式闸盘紧链 (2)工作面采用自移式液压支架支护自移式液压支架ZFS3200 /16/28(郑州煤矿机械集团有限公司)支撑高度1.62.8 m工作阻力3126 KN初撑力2488 KN支架中心距1500 mm支护强度0.55 Mpa移架步距700 mm支架重量13.9吨 (3)支护方式由于煤层f = 2,顶煤厚度较小,选用及时支护。 (4)移架方式 由于采用及时支护方式,而且工作面每天推进四刀,所以选择顺序移架方式。顺序式移架速度快,能满足采煤机快速牵引的需要,适用于顶板比较稳定的高产工作面。 (5)工作面的支架需求量:由 N = L / E ; (公式1-9)式中 N工作面支架数目,取整数; L 工作面长度,m; E 架中心距; n = 195/1.5=130(架) (6)端头支架由于巷道宽度为4.5m,而架宽为1.431.59 m,因此选2架,上下两端共需4架。 (7)超前支护方式和距离由于采用综采开采,支撑压力分布范围为2030米,峰值点距煤壁前方 5-15m,所以超前支护的距离为20米。选用单体支柱和金属铰接顶梁支护。铰接顶梁的长度为1000mm。(8)校核支架的高度 经查采矿设计手册得到: 在实际使用中,通常所选用的支架的最大结构高度比最大采高大200mm左右。即 Hmax = Mmax+0.2m。最小结构高度应比最小的采高小250350mm。即 Hmin= Mmin-(0.2 50.35)m已知选用的 ZFS3200 /16/28 支撑掩护式支架的最大结构高度为 2.8m(2.6+0.2),满足要求。支架的最小结构高度为 1.6m1.9-0.25,满足要求。 强度校核: 强度校核公式如下: Q=K×H1×× (公式1-10) 式中 K-顶板高度系数,取k=5; H1-工作面采高,m; -岩石密度, kg/; 将各参数值代入则有: Q=5×2.6×2.5× =0.33 MPa由于0.33 MPa0.55 Mpa (支护强度),因此支架选型满足工作要求。5、处理采空区 采用全部跨落法处理采空区。  第2节 工作面合理长度的验证1从煤层地质条件考虑该采区内的可采煤层的地质条件较好,无断层,煤层倾角为25°,煤层厚度适中,顶底板较稳定,瓦斯涌出量较低,自然发火倾向较弱,涌水量也较小,所以布置195米的工作面比较合适