变量与函数说课精.ppt
变量与函数说课第1页,本讲稿共26页说课程序说课程序一说一说教材教材四说四说教学程序教学程序二说二说教法教法三三说说学法学法五说五说练习练习六说六说板书板书第2页,本讲稿共26页 主要内容:变量和函数的概念主要内容:变量和函数的概念 铺垫知识铺垫知识:代数式、方程、不等式:代数式、方程、不等式地位作用地位作用:(1)函数知识的开端)函数知识的开端 (2)由常量数学到变量)由常量数学到变量 数学的转折点数学的转折点 (3)进一步提升抽象思维)进一步提升抽象思维 1.11.1教材结构与内容简析教材结构与内容简析一、说教材一、说教材第3页,本讲稿共26页1.21.2教学目标教学目标1.2.1知识目标知识目标(1)认识常量、变量(包括自变量与)认识常量、变量(包括自变量与 因变量)因变量)(2)了解函数的概念和三种表示方法)了解函数的概念和三种表示方法(3)学会分析简单实际问题中的函数)学会分析简单实际问题中的函数 关系,并能举出实例关系,并能举出实例 第4页,本讲稿共26页1.2.2能力目标能力目标(1)培养观察、分析能力)培养观察、分析能力(2)培养独立思考、合作交流能力)培养独立思考、合作交流能力(3)培养语言表达、抽象概括能力)培养语言表达、抽象概括能力 第5页,本讲稿共26页1.2.3情感目标情感目标(1)体会生活中存在大量互相依赖)体会生活中存在大量互相依赖 的变量,感受数学来源于生活的变量,感受数学来源于生活(2)增强积极参与、合作交流)增强积极参与、合作交流 的主体意识的主体意识(3)学会用动态的观点欣赏世界)学会用动态的观点欣赏世界第6页,本讲稿共26页1.31.3教材的重点和难点的处理思路教材的重点和难点的处理思路 主要表现在:主要表现在:固定思维方式:固定思维方式:静止、孤立、片面静止、孤立、片面 借助具体形象进行抽象思维借助具体形象进行抽象思维 缺乏辩证思维能力缺乏辩证思维能力思维能力水思维能力水平的制约平的制约 重点:函数的概念重点:函数的概念 难点:理解函数的概念难点:理解函数的概念 主要困难在于:学生由常量数学主要困难在于:学生由常量数学 到变量数学的观念的转变。到变量数学的观念的转变。第7页,本讲稿共26页教材处理难点的方法教材处理难点的方法:创设情境,层层递进创设情境,层层递进二、说教法二、说教法注注重重直直观观性性背背景景注注重重学学生生丰丰富富的的感感性性认认识识把把抽抽象象问问题题具具体体化化我采取的策略:我采取的策略:设设置置互互动动环环节节架架桥桥铺铺设设法法多多媒媒体体演演示示目的目的:突破难点突破难点 第8页,本讲稿共26页突出重点的方法突出重点的方法抓抓住住函函数数概概念念的的关关键键词词分分析析问问题题 采采用用表表格格形形式式板板书书重重点点 通通过过设设疑疑对对比比揭揭示示重重点点 第9页,本讲稿共26页三、说学法三、说学法学法学法指导指导增强合作增强合作交流的意识交流的意识 学会数学学会数学地思考地思考用对比的方用对比的方法探讨问题法探讨问题 创设创设创设创设情境情境情境情境体现体现体现体现变量变量变量变量设置设置设置设置互动互动互动互动第10页,本讲稿共26页四、教学程序四、教学程序问题一问题一应用新知应用新知 问题二问题二问题三问题三形成形成概念概念练习巩固练习巩固归纳归纳小结小结第11页,本讲稿共26页上学时上学时早操时早操时放午学时放午学时放晚学时放晚学时天冷多穿点!变暖和了有点热了变冷了吗?嗯问题一:气温变化问题一:气温变化 愿愿学学第12页,本讲稿共26页上学时:上学时:630630早操时:早操时:830830放午学:放午学:11301130放晚学:放晚学:17001700温度温度T T()时间时间t t(h)h)2 216164 48 86 618181010141412122020 2222 24240 02 24 410108 86 6161612121414-2-2-4-418184 47 71 14 48 8最最高高1616最最低低-2 21313303002024040连线连线随着时间随着时间t(h)t(h)的变化,的变化,气温气温T(T()也相应地随之也相应地随之变变化化气温变化图气温变化图对对应应描述方法描述方法图像法图像法第13页,本讲稿共26页 启发启发性的性的语言语言课件课件动态动态演示演示听觉听觉视觉视觉刺激刺激感觉感觉变化变化对应对应结结合合图图像像第14页,本讲稿共26页问题二:年利率的变化问题二:年利率的变化 存期存期x三月三月六月六月一年一年二年二年三年三年五年五年年利率年利率y()1.802.252.523.063.694.14 2006 2006年年8 8月中国人民银行月中国人民银行“整存整整存整取取”年利率表:年利率表:年利率随存期的变化而变化年利率随存期的变化而变化描述方法描述方法列表法列表法对于存期对于存期x的每一个值,都有唯一的年的每一个值,都有唯一的年利率利率y与之对应与之对应存在两个变量存期存在两个变量存期x和年利率和年利率y第15页,本讲稿共26页问题三:汽车行驶问题三:汽车行驶 一辆汽车在公路上匀速行驶,一辆汽车在公路上匀速行驶,速度速度v=60km/h v=60km/h,如下是时间与,如下是时间与路程对应的数值:路程对应的数值:时间时间t(h)11.522.53路程路程s(km)6090120150180路程路程=速度速度时间时间,即即s=vts=vt描述方法描述方法列表法列表法解析法解析法熟熟悉悉熟熟知知当速度一定时,时间越长,当速度一定时,时间越长,路程越远路程越远第16页,本讲稿共26页形成概念形成概念(1)变量和常量变量和常量(2)函数的概念:函数的概念:在一个变化过程中,有两个变量在一个变化过程中,有两个变量x和和y,对于,对于x的每一个值,的每一个值,y都有唯一的值与之对应,我们就都有唯一的值与之对应,我们就说说x是自变量,是自变量,y是因变量,此时也称是因变量,此时也称y是是x的函数。的函数。(3)函数的三种表示方法:函数的三种表示方法:图像法图像法 列表法列表法 解析法解析法 第17页,本讲稿共26页 提示:利用关系式列表提示:利用关系式列表:半径半径r11.522.63.2面积面积s3.14 7.0712.5621.2332.15圆的面积圆的面积s是半径是半径r的函数吗?的函数吗?原有知识:原有知识:S与与r的关系是的关系是:S=r2(1)揭示函数的本质:对应、变化)揭示函数的本质:对应、变化(2)发现:半径越大,面积越大。)发现:半径越大,面积越大。(3)结论:面积是半径的函数)结论:面积是半径的函数第18页,本讲稿共26页 请同学们举几个日常生活中遇到请同学们举几个日常生活中遇到的函数关系的例子。的函数关系的例子。在吹气球过程中,气球的体积是时在吹气球过程中,气球的体积是时间的函数吗?间的函数吗?如:购买铅笔:如:购买铅笔:总价(总价(s)=单价(单价(0.5)数量(数量(n)第19页,本讲稿共26页练习练习 写出下列问题中的函数关系式写出下列问题中的函数关系式,并指并指出其中的常量与变量出其中的常量与变量.圆的周长圆的周长C与半径与半径r的函数关系;的函数关系;n边形的内角和的度数边形的内角和的度数s与边数与边数n的函数关的函数关系式系式;某种饮水机盛满某种饮水机盛满20升水升水,打开阀门每分钟可打开阀门每分钟可流出流出0.2升水升水,饮水机中剩余水量饮水机中剩余水量y(升升)与与放水时间放水时间x(分分)之间的关系式之间的关系式.第20页,本讲稿共26页板书板书变化变化过程过程 存在变量存在变量 对应对应关系关系 自变自变量量x 因变因变量量y 气温气温 时间时间t 温度温度T 气温图气温图 年利年利率率 存期存期x 年利年利率率y 表格表格 汽车汽车行驶行驶 路程路程s 速度速度v 表格表格解析式解析式 圆的圆的面积面积 半径半径r 面积面积s 解析式解析式表格表格 一、变量和常量一、变量和常量二、函数的概念二、函数的概念 在一个变化过程中,有在一个变化过程中,有两个变量两个变量x和和y,对于,对于x的每的每一个值,一个值,y都有唯一的值与都有唯一的值与之对应,我们就说之对应,我们就说x是自变是自变量,量,y是因变量,此时也是因变量,此时也称称y是是x的函数。的函数。函数关系的三种表示函数关系的三种表示方法:方法:图像法图像法 列表法列表法 解析法解析法三、函数是表示事物运动三、函数是表示事物运动变化常用的方法。变化常用的方法。第21页,本讲稿共26页归纳小结归纳小结一、内容一、内容(1)变量和常量)变量和常量(2)函数的概念)函数的概念 二、形式二、形式(1)图像法)图像法(2)列表法)列表法(3)解析法)解析法三、思想方法:三、思想方法:函数是表示事物运动变化常用的函数是表示事物运动变化常用的方法。方法。链接链接第22页,本讲稿共26页附:附:教材中的问题三教材中的问题三波长波长(m)30050060010001500频率频率f(kHz)1000600500300200 下面是收音机上一些波长与频率的对应下面是收音机上一些波长与频率的对应的数值:的数值:细心的同学可能会发现:细心的同学可能会发现:与与f的乘积是一个定值,的乘积是一个定值,即即f=300000,或者说,或者说f=300000/说明波长说明波长越大,频率越大,频率f就越小就越小第23页,本讲稿共26页问题三的简单说明问题三的简单说明1.学生对调频式收音机不熟悉;学生对调频式收音机不熟悉;2.物理上,学生还没有学到;物理上,学生还没有学到;3.不利于函数关系式的建立。不利于函数关系式的建立。第24页,本讲稿共26页问题三:汽车行驶问题三:汽车行驶 一辆汽车在公路上匀速行驶,一辆汽车在公路上匀速行驶,速度速度v=60km/h v=60km/h,如下是时间与,如下是时间与路程对应的数值:路程对应的数值:时间时间t(h)11.522.53路程路程s(km)6090120150180路程路程=速度速度时间时间,即即s=vts=vt描述方法描述方法列表法列表法解析法解析法熟熟悉悉熟熟知知当速度一定时,时间越长,当速度一定时,时间越长,路程越远路程越远第25页,本讲稿共26页第26页,本讲稿共26页