第一章电路元件与电路定律精选PPT.ppt
第一章电路元件与电路定律第1页,本讲稿共127页1.1 电路和电路模型(电路和电路模型(model)1.实际实际电路电路功能功能a 能量的传输、分配与转换;能量的传输、分配与转换;b 信息的传递与处理。信息的传递与处理。共性共性建立在同一电路理论基础上建立在同一电路理论基础上由电工设备和电气器件按预期目的连接由电工设备和电气器件按预期目的连接构成的电流的通路。构成的电流的通路。第2页,本讲稿共127页 反映实际电路部件的主要电磁反映实际电路部件的主要电磁 性质的理想电路元件及其组合。性质的理想电路元件及其组合。2.电路模型电路模型 (circuit model)导线导线电电池池开关开关灯泡灯泡电路图电路图l理想电路元件理想电路元件有某种确定的电磁性能的理想元件有某种确定的电磁性能的理想元件l电路模型电路模型第3页,本讲稿共127页几种基本的电路元件:几种基本的电路元件:电阻元件:表示消耗电能的元件电阻元件:表示消耗电能的元件电感元件:表示产生磁场,储存磁场能量的元件电感元件:表示产生磁场,储存磁场能量的元件电容元件:表示产生电场,储存电场能量的元件电容元件:表示产生电场,储存电场能量的元件电源元件:表示各种将其它形式的能量转变成电能的元件电源元件:表示各种将其它形式的能量转变成电能的元件注注l 具有相同的主要电磁性能的实际电路部件,具有相同的主要电磁性能的实际电路部件,在一定条件下可用同一模型表示;在一定条件下可用同一模型表示;l 同一实际电路部件在不同的应用条件下,其同一实际电路部件在不同的应用条件下,其 模型可以有不同的形式模型可以有不同的形式第4页,本讲稿共127页例例3.集总参数电路集总参数电路由集总元件构成的电路由集总元件构成的电路集总元件集总元件假定发生的电磁过程都集中在元件内部进行假定发生的电磁过程都集中在元件内部进行集总条件集总条件注注集总参数电路中集总参数电路中u、i可以是时间的函数,但与空间坐标可以是时间的函数,但与空间坐标无关无关第5页,本讲稿共127页1.2 电路变量电路变量 电电路路中中的的主主要要物物理理量量有有电电压压、电电流流、电电荷荷、磁磁链链、能能量量、电电功功率率等等。在在线线性性电电路路分分析析中中人人们们主主要要关关心心的的物物理理量量是是电电流流、电压和功率。电压和功率。1.电流的参考方向电流的参考方向(current reference direction)l电流电流l电流强度电流强度带电粒子有规则的定向运动带电粒子有规则的定向运动单位时间内通过导体横截面的电荷量单位时间内通过导体横截面的电荷量第6页,本讲稿共127页l 方向方向规定正电荷的运动方向为电流的实际方向规定正电荷的运动方向为电流的实际方向l 单位单位1kA=103A1mA=10-3A1 A=10-6AA(安培)、(安培)、kA、mA、A元件元件(导线导线)中电流流动的实际方向只有两种可能中电流流动的实际方向只有两种可能:实际方向实际方向实际方向实际方向 AABB问题问题复杂电路或电路中的电流随时间变化时,电流复杂电路或电路中的电流随时间变化时,电流的实际方向往往很难事先判断的实际方向往往很难事先判断第7页,本讲稿共127页l参考方向参考方向i 参考方向参考方向大小大小方向方向(正负)正负)电流电流(代数量代数量)任意假定一个正电荷运动的方向即为电任意假定一个正电荷运动的方向即为电流的参考方向。流的参考方向。ABi 参考方向参考方向i 参考方向参考方向i 0i 0参考方向参考方向U+实际方向实际方向+实际方向实际方向参考方向参考方向U+0 吸收正功率吸收正功率 (实际吸收实际吸收)P0 发出正功率发出正功率 (实际发出实际发出)P0 发出负功率发出负功率 (实际吸收实际吸收)l u,i 取非取非关联参考方向关联参考方向+-iu+-iu第18页,本讲稿共127页例例564123I2I3I1+U6U5U4U3U2U1求图示电路中各方框所求图示电路中各方框所代表的元件消耗或产生代表的元件消耗或产生的功率。已知:的功率。已知:U1=1V,U2=-3V,U3=8V,U4=-4V,U5=7V,U6=-3VI1=2A,I2=1A,I3=-1A 解解注注对一完整的电路,发出的功率消耗的功率对一完整的电路,发出的功率消耗的功率第19页,本讲稿共127页 1.3 电阻元件与欧姆定律电阻元件与欧姆定律2.线性定常电阻元件线性定常电阻元件l 电路符号电路符号R电阻元件电阻元件对电流呈现阻力的元件。其伏安关系用对电流呈现阻力的元件。其伏安关系用ui平面的一平面的一条曲线来描述:条曲线来描述:iu任何时刻端电压与其电流成正比的电阻元件。任何时刻端电压与其电流成正比的电阻元件。1.定义定义伏安伏安特性特性第20页,本讲稿共127页 l ui 关系关系R 称为电阻,单位:称为电阻,单位:(欧欧)(Ohm,欧姆,欧姆)满足欧姆定律满足欧姆定律(Ohms Law)uil 单位单位G 称为电导,单位:称为电导,单位:S(西门子西门子)(Siemens,西门子,西门子)u、i 取关联取关联参考方向参考方向Rui+伏安伏安特性特性为一为一条过条过原点原点的直的直线线第21页,本讲稿共127页(2)如电阻上的电压与电流参考方向非关联如电阻上的电压与电流参考方向非关联 公式中应冠以负号公式中应冠以负号注注(3)说明线性电阻是无记忆、双向性的元件说明线性电阻是无记忆、双向性的元件欧姆定律欧姆定律(1)只适用于线性电阻,只适用于线性电阻,(R 为常数)为常数)则欧姆定律写为则欧姆定律写为u R i i G u公式和参考方向必须配套使用!公式和参考方向必须配套使用!Rui+-第22页,本讲稿共127页3.功率和能量功率和能量上述结果说明电阻元件在任何时刻总是消耗功率的。上述结果说明电阻元件在任何时刻总是消耗功率的。p u i (R i)i i2 R u(u/R)u2/Rp u i i2R u2/R功率:功率:Rui+-Rui+-第23页,本讲稿共127页可用功表示。从可用功表示。从 t 到到t0电阻消耗的能量:电阻消耗的能量:Riu+4.电阻的开路与短路电阻的开路与短路能量:能量:l 短路短路l 开路开路ui第24页,本讲稿共127页 1.7 电源元件电源元件(independent source)其两端电压总能保持定值或一定的时间函数,其其两端电压总能保持定值或一定的时间函数,其值与流过它的电流值与流过它的电流 i 无关的元件叫理想电压源。无关的元件叫理想电压源。l 电路符号电路符号1.理想电压源理想电压源l 定义定义i+_第25页,本讲稿共127页(1)电源两端电压由电源本身决定,电源两端电压由电源本身决定,(2)与外电路无关;与流经它的电流方与外电路无关;与流经它的电流方(3)向、大小无关。向、大小无关。(2)通过电压源的电流由电源及外通过电压源的电流由电源及外(3)电路共同决定。电路共同决定。l 理想电压源的电压、电流关系理想电压源的电压、电流关系ui伏安关系伏安关系例例Ri-+外外电电路路电压源不能短路!电压源不能短路!第26页,本讲稿共127页l电压源的功率电压源的功率电场力做功电场力做功,电源吸收功率。电源吸收功率。(1)电压、电流的参考方向非关联;电压、电流的参考方向非关联;物理意义:物理意义:+_iu+_+_iu+_电流(正电荷电流(正电荷)由低电位向)由低电位向 高高电位移动,外力克服电场力作功电位移动,外力克服电场力作功电源发出功率。电源发出功率。发出功率,起电源作用发出功率,起电源作用(2)电压、电流的参考方向关联;电压、电流的参考方向关联;物理意义:物理意义:吸收功率,充当负载吸收功率,充当负载或:或:发出负功发出负功第27页,本讲稿共127页例例+_i+_+_10V5V计算图示电路各元件的功率。计算图示电路各元件的功率。解解发出发出发出发出吸收吸收满足满足:P(发)(发)P(吸)(吸)第28页,本讲稿共127页 实实际际电电压压源源也也不不允允许许短短路路。因因其其内内阻阻小小,若若短短路路,电流很大,可能烧毁电源。电流很大,可能烧毁电源。usuiOl 实际电压源实际电压源i+_u+_考虑内阻考虑内阻伏安特性伏安特性一个好的电压源要求一个好的电压源要求第29页,本讲稿共127页 其输出电流总能保持定值或一定其输出电流总能保持定值或一定的时间函数,其值与它的两端电压的时间函数,其值与它的两端电压u 无关的元件叫理想电流源。无关的元件叫理想电流源。l 电路符号电路符号2.理想电流源理想电流源l 定义定义u+_(1)电流源的输出电流由电源本身决定,与外电电流源的输出电流由电源本身决定,与外电路无关;与它两端电压方向、大小无关路无关;与它两端电压方向、大小无关(2)电流源两端的电压由电源及外电路共同决定电流源两端的电压由电源及外电路共同决定l 理想电流源的电压、电流关系理想电流源的电压、电流关系ui伏安伏安关系关系第30页,本讲稿共127页例例外外电电路路电流源不能开路!电流源不能开路!Ru-+实际电流源的产生实际电流源的产生可可由由稳稳流流电电子子设设备备产产生生,如如晶晶体体管管的的集集电电极极电电流流与与负负载载无无关关;光光电池在一定光线照射下光电池被激发产生一定值的电流等。电池在一定光线照射下光电池被激发产生一定值的电流等。第31页,本讲稿共127页l电流源的功率电流源的功率(1)电压、电流的参考方向非关联;电压、电流的参考方向非关联;发出功率,起电源作用发出功率,起电源作用(2)电压、电流的参考方向关联;电压、电流的参考方向关联;吸收功率,充当负载吸收功率,充当负载或:或:发出负功发出负功u+_u+_第32页,本讲稿共127页例例计算图示电路各元件的功率。计算图示电路各元件的功率。解解发出发出发出发出满足满足:P(发)(发)P(吸)(吸)+_u+_2A5Vi第33页,本讲稿共127页 实实际际电电流流源源也也不不允允许许开开路路。因因其其内内阻阻大大,若若开开路路,电电压很高,可能烧毁电源。压很高,可能烧毁电源。isuiOl 实际电实际电流流源源考虑内阻考虑内阻伏安特性伏安特性一个好的电流源要求一个好的电流源要求u+_i第34页,本讲稿共127页1.5 1.5 基尔霍夫定律基尔霍夫定律 (Kirchhoffs Laws)(Kirchhoffs Laws)基基尔尔霍霍夫夫定定律律包包括括基基尔尔霍霍夫夫电电流流定定律律 (KCL)和和基基尔尔霍霍夫夫电电压压定定律律(KVL )。它它反反映映了了电电路路中中所所有有支支路路电电压压和和电电流流所所遵遵循循的的基基本本规规律律,是是分分析析集集总总参参数数电电路路的的基基本本定定律律。基基尔尔霍霍夫夫定定律律与元件特性构成了电路分析的基础。与元件特性构成了电路分析的基础。第35页,本讲稿共127页1.1.几个名词几个名词电路中通过同一电流的分支。电路中通过同一电流的分支。(b)三条或三条以上支路的连接点称为三条或三条以上支路的连接点称为节点。节点。(n n )b=3an=2b+_R1uS1+_uS2R2R3(1)支路)支路 (branch)电路中每一个两端元件就叫一条支路电路中每一个两端元件就叫一条支路i3i2i1(2)(2)节点节点 (node)(node)b=5第36页,本讲稿共127页由支路组成的闭合路径。由支路组成的闭合路径。(l)两节点间的一条通路。由支路构成。两节点间的一条通路。由支路构成。对对平面电路平面电路,其内部不含任何支路的回路称网孔。,其内部不含任何支路的回路称网孔。l=3+_R1uS1+_uS2R2R3123(3)(3)路径路径(path)(path)(4)(4)回路回路(loop)(loop)(5)(5)网孔网孔(mesh)(mesh)网孔是回路,但回路不一定是网孔网孔是回路,但回路不一定是网孔第37页,本讲稿共127页2.2.基尔霍夫电流定律基尔霍夫电流定律 (KCL)令流出为令流出为“+”+”,有:,有:例例 在在集集总总参参数数电电路路中中,任任意意时时刻刻,对对任任意意结结点点流流出出或或流流入入该该结结点点电流的代数和等于零。电流的代数和等于零。流进的电流进的电流等于流流等于流出的电流出的电流第38页,本讲稿共127页1 3 2例例三式相加得:三式相加得:表明表明KCL可推广应用于电路中包围多可推广应用于电路中包围多个结点的任一闭合面个结点的任一闭合面明确明确(1)KCL是电荷守恒和电流连续性原理在电路中任是电荷守恒和电流连续性原理在电路中任 意结点处的反映;意结点处的反映;(2)KCL是对支路电流加的约束,与支路上接的是是对支路电流加的约束,与支路上接的是 什么元件无关,与电路是线性还是非线性无关;什么元件无关,与电路是线性还是非线性无关;(3)KCL方程是按电流参考方向列写,与电流实际方程是按电流参考方向列写,与电流实际 方向无关。方向无关。第39页,本讲稿共127页(2 2)选定回路绕行方向,)选定回路绕行方向,顺时针或逆时针顺时针或逆时针.U1US1+U2+U3+U4+US4=03.3.基尔霍夫电压定律基尔霍夫电压定律 (KVL)在在集总参数电路中,任一时刻,集总参数电路中,任一时刻,沿任一闭合路径绕沿任一闭合路径绕行,各支路电压的代数和等于零行,各支路电压的代数和等于零。I1+US1R1I4_+US4R4I3R3R2I2_U3U1U2U4(1 1)标定各元件电压参考方向)标定各元件电压参考方向 U2+U3+U4+US4=U1+US1 或:或:R1I1+R2I2R3I3+R4I4=US1US4第40页,本讲稿共127页例例KVL也适用于电路中任一假想的回路也适用于电路中任一假想的回路aUsb_-+U2U1明确明确(1)KVL的实质反映了电路遵的实质反映了电路遵 从能量守恒定律从能量守恒定律;(2)KVL是对回路电压加的约束,与回是对回路电压加的约束,与回路各支路上接的是什么元件无关,与电路路各支路上接的是什么元件无关,与电路是线性还是非线性无关;是线性还是非线性无关;(3)KVL方程是按电压参考方向列写,与电压实际方程是按电压参考方向列写,与电压实际 方向无关。方向无关。第41页,本讲稿共127页4.4.KCL、KVL小结:小结:(1)(1)KCL是是对对支支路路电电流流的的线线性性约约束束,KVL是是对对回回路路电电压压的的线线性约束。性约束。(2)(2)KCL、KVL与组成支路的元件性质及参数无关。与组成支路的元件性质及参数无关。(3)(3)KCL表表明明在在每每一一节节点点上上电电荷荷是是守守恒恒的的;KVL是是能能量量守守恒恒的具体体现的具体体现(电压与路径无关电压与路径无关)。(4)(4)KCL、KVL只适用于集总参数的电路。只适用于集总参数的电路。第42页,本讲稿共127页思考:思考:i1=i2?3.AB+_1111113+_2i2i1UA=UB?I=01.?AB+_1111113+_22.i1第43页,本讲稿共127页1。2。+-4V5Vi=?3.3.+-4V5V1A+-u=?4.4.3 3 第44页,本讲稿共127页解解10V+-1A-10VI=?10 5.4V+-10AU=?2 6.+-3AI解解I1第45页,本讲稿共127页1.9 受控电源受控电源(非独立源非独立源)(controlled source or dependent source)电压或电流的大小和方向不是给定的时间函数,而是电压或电流的大小和方向不是给定的时间函数,而是受电路中某个地方的电压受电路中某个地方的电压(或电流或电流)控制的电源,称受控源。控制的电源,称受控源。l 电路符号电路符号+受控电压源受控电压源1.定义定义受控电流源受控电流源第46页,本讲稿共127页(1)(1)电流控制的电流源电流控制的电流源 (CCCS):电流放大倍数电流放大倍数 根据控制量和被控制量是电压根据控制量和被控制量是电压u u 或电流或电流i i ,受控源可分,受控源可分四种类型:四种类型:当被控制量是电压时,用受控电压源表示;当被当被控制量是电压时,用受控电压源表示;当被控制量是电流时,用受控电流源表示。控制量是电流时,用受控电流源表示。2.分类分类四端元件四端元件b b i1+_u2i2_u1i1+输出:受控部分输出:受控部分输入:控制部分输入:控制部分第47页,本讲稿共127页g:转移电导转移电导(2)(2)电压控制的电流源电压控制的电流源 (VCCS)u1gu u1 1+_u2i2_i1+(3)(3)电压控制的电压源电压控制的电压源 (VCVS)u1+_u2i2_u1i1+-:电压放大倍数电压放大倍数 第48页,本讲稿共127页ri1+_u2i2_u1i1+-(4)(4)电流控制的电压源电流控制的电压源 (CCVS)r:转移电阻转移电阻 例例电电路路模模型型第49页,本讲稿共127页3.3.受控源与独立源的比较受控源与独立源的比较(1)(1)独独立立源源电电压压(或或电电流流)由由电电源源本本身身决决定定,与与电电路路中中其其它它电电压压、电电流流无无关关,而受控源电压而受控源电压(或电流或电流)由控制量决定。由控制量决定。(2)(2)独独立立源源在在电电路路中中起起“激激励励”作作用用,在在电电路路中中产产生生电电压压、电电流流,而而受受控控源源只只是是反反映映输输出出端端与与输输入入端端的的受受控控关关系系,在在电电路路中中不不能能作作为为“激励激励”。例例求:电压求:电压u2。解解5i1+_u2_u1=6Vi1+-3 第50页,本讲稿共127页10V+-3I2U=?I=05 例例.5-+2I2 I25+-解解第51页,本讲稿共127页+-I1U=?例例.R2 I1R1US解解选择参数可以得到电选择参数可以得到电压和功率放大。压和功率放大。第52页,本讲稿共127页1.6 1.6 电路的等效变换电路的等效变换 任何一个复杂的电路任何一个复杂的电路,向外引出两个端钮,且从一个端子向外引出两个端钮,且从一个端子流入的电流等于从另一端子流出的电流,则称这一电路为二流入的电流等于从另一端子流出的电流,则称这一电路为二端络网端络网(或一端口网络或一端口网络)。1.1.两端电路(网络)两端电路(网络)无无源源无无源源一一端端口口2.2.两端电路等效的概念两端电路等效的概念 两个两端电路,端口具有相同的电压、电流关系两个两端电路,端口具有相同的电压、电流关系,则称它则称它们是等效的电路。们是等效的电路。ii第53页,本讲稿共127页B+-uiC+-ui等效等效对对A电路中的电流、电压和功率而言,满足电路中的电流、电压和功率而言,满足BACA明明确确(1 1)电路等效变换的条件)电路等效变换的条件(2 2)电路等效变换的对象)电路等效变换的对象(3 3)电路等效变换的目的)电路等效变换的目的两电路具有相同的两电路具有相同的VCRVCR未变化的外电路未变化的外电路A A中的电中的电压、电流和功率压、电流和功率化简电路,方便计算化简电路,方便计算第54页,本讲稿共127页2.3 2.3 电阻的串联、并联和串并联电阻的串联、并联和串并联(1 1)电路特点电路特点1.1.电阻串联电阻串联(Series Connection of Resistors)+_R1R n+_U ki+_u1+_unuRk(a)(a)各电阻顺序连接,流过同一电流各电阻顺序连接,流过同一电流 (KCL);(b)(b)总电压等于各串联电阻的电压之和总电压等于各串联电阻的电压之和 (KVL)L)。第55页,本讲稿共127页 由欧姆定律由欧姆定律结论:结论:等效等效串联电路的总电阻等于各分电阻之和。串联电路的总电阻等于各分电阻之和。(2)(2)等效电阻等效电阻u+_R e qi+_R1R n+_U ki+_u1+_unuRk第56页,本讲稿共127页(3)(3)串联电阻的分压串联电阻的分压说明电压与电阻成正比,因此串连电阻电路可作分压电路说明电压与电阻成正比,因此串连电阻电路可作分压电路+_uR1R2+-u1-+u2i 注意方向注意方向!例例两个电阻的分压:两个电阻的分压:第57页,本讲稿共127页(4)功率功率p1=R1i2,p2=R2i2,pn=Rni2p1:p2:pn=R1:R2 :Rn总功率总功率 p=Reqi2=(R1+R2+Rn)i2 =R1i2+R2i2+Rni2 =p1+p2+pn(1)电阻串连时,各电阻消耗的功率与电阻大小成正比电阻串连时,各电阻消耗的功率与电阻大小成正比(2)等效电阻消耗的功率等于各串连电阻消耗功率的总和等效电阻消耗的功率等于各串连电阻消耗功率的总和表明表明第58页,本讲稿共127页2.2.电阻并联电阻并联 (Parallel Connection)(Parallel Connection)inR1R2RkRni+ui1i2ik_(1)(1)电路特点电路特点(a)(a)各电阻两端分别接在一起,两端为同一电压各电阻两端分别接在一起,两端为同一电压 (KVL);(b)(b)总电流等于流过各并联电阻的电流之和总电流等于流过各并联电阻的电流之和 (KCL)。i=i1+i2+ik+in第59页,本讲稿共127页等效等效由由KCL:i=i1+i2+ik+in=u/R1+u/R2+u/Rn=u(1/R1+1/R2+1/Rn)=uGeqG=1/R为电导为电导(2)(2)等效电阻等效电阻+u_iReq等效电导等于并联的各电导之和等效电导等于并联的各电导之和inR1R2RkRni+ui1i2ik_第60页,本讲稿共127页(3 3)并联电阻的电流分配并联电阻的电流分配对于两电阻并联,有:对于两电阻并联,有:R1R2i1i2i电流分配与电导成正比电流分配与电导成正比第61页,本讲稿共127页(4 4)功率功率p1=G1u2,p2=G2u2,pn=Gnu2p1:p2:pn=G1:G2 :Gn总功率总功率 p=Gequ2=(G1+G2+Gn)u2 =G1u2+G2u2+Gnu2 =p1+p2+pn(1)电阻并连时,各电阻消耗的功率与电阻大小成反比电阻并连时,各电阻消耗的功率与电阻大小成反比(2)等效电阻消耗的功率等于各串连电阻消耗功率的总和等效电阻消耗的功率等于各串连电阻消耗功率的总和表明表明第62页,本讲稿共127页3.3.电阻的串并联电阻的串并联 例例电路中有电阻的串联,又有电阻的并联,电路中有电阻的串联,又有电阻的并联,这种连接方式称电阻的串并联。这种连接方式称电阻的串并联。计算各支路的电压和电流。计算各支路的电压和电流。i1+-i2i3i4i518 6 5 4 12 165V165V165165Vi1+-i2i318 9 5 6 第63页,本讲稿共127页例例解解 用分流方法做用分流方法做用分压方法做用分压方法做求:求:I I1 1 ,I,I4 4 ,U,U4 4+_2R2R2R2RRRI1I2I3I412V_U4+_U2+_U1+第64页,本讲稿共127页从以上例题可得求解串、并联电路的一般步骤:从以上例题可得求解串、并联电路的一般步骤:(1)求出等效电阻或等效电导;求出等效电阻或等效电导;(2)应用欧姆定律求出总电压或总电流;)应用欧姆定律求出总电压或总电流;(3)应用欧姆定律或分压、分流公式求各电阻上的电流和电压)应用欧姆定律或分压、分流公式求各电阻上的电流和电压以上的关键在于识别各电阻的串联、并联关系!以上的关键在于识别各电阻的串联、并联关系!例例6 6 1515 5 5 5 5 d dc cb ba a求求:Rab,Rcd等效电阻针对电路的某两等效电阻针对电路的某两端而言,否则无意义。端而言,否则无意义。第65页,本讲稿共127页6060 100100 5050 1010 b ba a4040 8080 2020 1515 2020 b ba a5 5 6 6 6 6 7 7 b ba ac cd dRRRR1.3.2.第66页,本讲稿共127页例例6060 100100 5050 1010 b ba a4040 8080 2020 求求:Rab100100 6060 b ba a4040 2020 100100 100100 b ba a2020 6060 100100 6060 b ba a120120 2020 Rab7070 第67页,本讲稿共127页例例1515 2020 b ba a5 5 6 6 6 6 7 7 求求:Rab1515 b ba a4 4 3 3 7 7 1515 2020 b ba a5 5 6 6 6 6 7 7 1515 b ba a4 4 1010 Rab10 0 缩短无电阻支路缩短无电阻支路第68页,本讲稿共127页例例b ba ac cd dRRRR求求:Rab 对称电路对称电路 c、d等电位等电位b ba ac cd dRRRRb ba ac cd dRRRRii1ii2短路短路断路断路根据电根据电流分配流分配第69页,本讲稿共127页2.4 2.4 电阻的星形联接与三角形联接的电阻的星形联接与三角形联接的 等效变换等效变换 (Y Y 变换变换)1.电阻的电阻的 ,Y Y连接连接Y型型网络网络 型型网络网络 R12R31R23123R1R2R3123b ba ac cd dR1R2R3R4包含包含三端三端网络网络第70页,本讲稿共127页 ,Y Y 网络的变形:网络的变形:型电路型电路(型型)T 型电路型电路(Y、星、星 型型)这两个电路当它们的电阻满足一定的关系时,能够相互等效这两个电路当它们的电阻满足一定的关系时,能够相互等效第71页,本讲稿共127页u23 R12R31R23i3 i2 i1 123+u12 u31 R1R2R3i1Yi2Yi3Y123+u12Yu23Yu31Y i1 =i1Y,i2 =i2Y,i3 =i3Y,u12 =u12Y,u23 =u23Y,u31 =u31Y 2.2.YY 变换的等效条件变换的等效条件等效条件:等效条件:第72页,本讲稿共127页Y接接:用电流表示电压用电流表示电压u12Y=R1i1YR2i2Y 接接:用电压表示电流用电压表示电流i1Y+i2Y+i3Y=0 u31Y=R3i3Y R1i1Y u23Y=R2i2Y R3i3Y i3 =u31 /R31 u23 /R23i2 =u23 /R23 u12 /R12i1 =u12 /R12 u31 /R31u23 R12R31R23i3 i2 i1 123+u12 u31 R1R2R3i1Yi2Yi3Y123+u12Yu23Yu31Y(2)(1)第73页,本讲稿共127页由式由式(2)(2)解得:解得:i3 =u31 /R31 u23 /R23i2 =u23 /R23 u12 /R12i1 =u12 /R12 u31 /R31(1)(3)根据等效条件,比较式根据等效条件,比较式(3)(3)与式与式(1)(1),得,得Y Y型型型的变换条件:型的变换条件:或或第74页,本讲稿共127页类似可得到由类似可得到由 型型 Y Y型的变换条件:型的变换条件:或或简记方法:简记方法:或或 变变YY变变 第75页,本讲稿共127页特例:若三个电阻相等特例:若三个电阻相等(对称对称),则有,则有 R =3RY注意注意(1)(1)等效对外部等效对外部(端钮以外端钮以外)有效,对内不成立。有效,对内不成立。(2)(2)等效电路与外部电路无关。等效电路与外部电路无关。R31R23R12R3R2R1外大内小外大内小(3)(3)用于简化电路用于简化电路第76页,本讲稿共127页桥桥 T 电路电路1/3k 1/3k 1k RE1/3k 例例1k 1k 1k 1k RE1k RE3k 3k 3k i第77页,本讲稿共127页例例1 4 1+20V90 9 9 9 9-1 4 1+20V90 3 3 3 9-计算计算9090 电阻吸收的功率电阻吸收的功率1 10+20V90-i1i第78页,本讲稿共127页2A30 20 RL30 30 30 30 40 20 例例求负载电阻求负载电阻RL消耗的功率。消耗的功率。2A30 20 RL10 10 10 30 40 20 2A40 RL10 10 10 40 IL第79页,本讲稿共127页2.5 2.5 电压源和电流源的串联和并联电压源和电流源的串联和并联 1.理想电压源的串联和并联理想电压源的串联和并联相同的电压源相同的电压源才能并联才能并联,电电源中的电流不源中的电流不确定。确定。l串联串联等效电路等效电路+_uS+_uS2+_+_uS1+_uS注意参考方向注意参考方向等效电路等效电路l并联并联uS1+_+_IuS2第80页,本讲稿共127页+_uS+_iuRuS2+_+_uS1+_iuR1R2l 电压源与支路的串、并联等效电压源与支路的串、并联等效uS+_I任意任意元件元件u+_RuS+_Iu+_对外等效!对外等效!第81页,本讲稿共127页2.2.理想电流源的串联并联理想电流源的串联并联相同的理想电流源才能串联相同的理想电流源才能串联,每个电流源的端电压不能确定每个电流源的端电压不能确定l 串联串联l 并联并联iSiS1iS2iSniS等效电路等效电路注意参考方向注意参考方向iiS2iS1等效电路等效电路第82页,本讲稿共127页l 电流源与支路的串、并联等效电流源与支路的串、并联等效iS1iS2iR2R1+_u等效电路等效电路RiSiS任意任意元件元件u_+等效电路等效电路iSR对外等效!对外等效!第83页,本讲稿共127页2.6 2.6 电压源和电流源的等效变换电压源和电流源的等效变换 实际电压源、实际电流源两种模型可以进行等效变换,所实际电压源、实际电流源两种模型可以进行等效变换,所谓的等效是指端口的电压、电流在转换过程中保持不变。谓的等效是指端口的电压、电流在转换过程中保持不变。u=uS Ri ii=iS Giui=uS/Ri u/Ri比较比较可可得等效的条件:得等效的条件:iS=uS/Ri Gi=1/RiiGi+u_iSi+_uSRi+u_实实际际电电压压源源实实际际电电流流源源端口特性端口特性第84页,本讲稿共127页由电压源变换为电流源:由电压源变换为电流源:转换转换转换转换由电流源变换为电压源:由电流源变换为电压源:i+_uSRi+u_iGi+u_iSiGi+u_iSi+_uSRi+u_第85页,本讲稿共127页(2)(2)等效是对外部电路等效,对内部电路是不等效的。等效是对外部电路等效,对内部电路是不等效的。注意注意开路的电流源可以有电流流过并联电导开路的电流源可以有电流流过并联电导Gi 。电流源短路时电流源短路时,并联电导并联电导G Gi i中无电流。中无电流。电压源短路时,电阻中电压源短路时,电阻中R Ri i有电流;有电流;开路的电压源中无电流流过开路的电压源中无电流流过 Ri;iS(3)(3)理想电压源与理想电流源不能相互转换。理想电压源与理想电流源不能相互转换。方向:电流源电流方向与电压源电压方向相反方向:电流源电流方向与电压源电压方向相反。(1)变换关系变换关系数值关系数值关系:iS ii+_uSRi+u_iGi+u_iS表表现现在在第86页,本讲稿共127页利用电源转换简化电路计算。利用电源转换简化电路计算。例例1.I=0.5A6A+_U5 5 10V10V+_U55 2A6AU=20V例例2.5A3 4 7 2AI?+_15v_+8v7 7 IU=?第87页,本讲稿共127页例例3.把电路转换成一个电压源和一个电阻的串连。把电路转换成一个电压源和一个电阻的串连。10V10 10V6A+_70V10+_6V10 2A6A+_66V10+_第88页,本讲稿共127页1A10 6A7A10 70V10+_60V+_6V10+_6V10 6A+_66V10+_第89页,本讲稿共127页例例4.4.40V10 4 10 2AI=?2A6 30V_+_40V4 10 2AI=?6 30V_+_60V10 10 I=?30V_+_第90页,本讲稿共127页例例5.注注:受控源和独立源一样可以进行电源受控源和独立源一样可以进行电源转换;转换过程中注意不要丢失控转换;转换过程中注意不要丢失控制量。制量。+_US+_R3R2R1i1ri1求电流求电流i i1 1R1US+_R2/R3i1ri1/R3R+_US+_i1(R2/R3)ri1/R3第91页,本讲稿共127页例例5.+_US+_R3R2R1i1ri1求电流求电流i i1 1R+_US(R2/R1)/R1+_iri1US/R1+_R2/R1ri1R3i1US/R1+_R2ri1R3R1第92页,本讲稿共127页例例6.10V2k+_U+500I-I1.5k 10V+_UI1k 1k 10V0.5I+_UI把电路转换成一个电压源和一个电阻的串连。把电路转换成一个电压源和一个电阻的串连。第93页,本讲稿共127页理想电流源的转移理想电流源的转移iSiSiSiSiSiS (1)把理想电流源沿着包含把理想电流源沿着包含它所在支路的任意回路转移到该它所在支路的任意回路转移到该回路的其他支路中去,得到电流回路的其他支路中去,得到电流源和电阻的并联结构。源和电阻的并联结构。(2)原电流源支路去掉,转原电流源支路去掉,转移电流源的值等于原电流源值,移电流源的值等于原电流源值,方向保证各结点的方向保证各结点的KCL方程不变。方程不变。第94页,本讲稿共127页例例1 I=?3A3 2 2 1A1 I=?3A3 2 2 1A3A1A1 I=?6V3 2 2 2V2VI=6/8=0.75A第95页,本讲稿共127页理想电压源的转移理想电压源的转移USUSUSUSUSUS (1)把理想电压源转移到邻近的支路,把理想电压源转移到邻近的支路,得到电压源和电阻的串联结构。得到电压源和电阻的串联结构。(2)原电压源支路短接,转移原电压源支路短接,转移电压源的值等于原电压源值,方向电压源的值等于原电压源值,方向保证各回路的保证各回路的KVL方程不变。方程不变。第96页,本讲稿共127页例例2 I=?10V2 1 1 5V+2 I=?10V2 1 1 5V+10V5V+I=?6V2 2/5+15V第97页,本讲稿共127页例例2 3V3 1 6V+2V+求图示求图示电路结构的等效电路结构的等效Y型电路型电路2 3A3 1 1A2A1/2 3A1 1/3 1A2A第98页,本讲稿共127页1/2 3A1 1/3 1A2A1/2 1 1/3 2A1A1/2 1 1/3 2A1A1A1/2 1 1/3 0.5V+1/3V2V1/6V2.5V第99页,本讲稿共127页2.6 2.6 输入电阻输入电阻 1.定义定义无无源源+-ui输入电阻输入电阻2.计算方法计算方法(1)如果一端口内部仅含电阻,则应用电阻的串、)如果一端口内部仅含电阻,则应用电阻的串、并联和并联和 Y变换等方法求它的等效电阻;变换等方法求它的等效电阻;(2)对含有受控源和电阻的两端电路,用电压、电流法求输)对含有受控源和电阻的两端电路,用电压、电流法求输 入电阻,即在端口加电压源,求得电流,或在端口加电流入电阻,即在端口加电压源,求得电流,或在端口加电流 源,求得电压,得其比值。源,求得电压,得其比值。第100页,本讲稿共127页例例1.US+_R3R2R1i1i2计算下例一端口电路的输入电阻计算下例一端口电路的输入电阻R2R3R1有源网络先把独立源置有源网络先把独立源置零:电压源短路;电流零:电压源短路;电流源断路,再求输入电阻源断路,再求输入电阻无源电无源电阻网络阻网络第101页,本讲稿共127页例例2.US+_3 i16+6i1U+_3 i16+6i1i外加电压源外加电压源第102页,本讲稿共127页例例3.u1+_15 0.1u15+iui1i2u1+_15 5 10 等效等效第103页,本讲稿共127页例例4.求求Rab和和Rcd2 u1+_3 6u1+dcab+_ui+_ui6 第104页,本讲稿共127页1.10 1.10 含运算放大器含运算放大器 的电阻电路的电阻电路l重点重点 (1 1)理想运算放大器的外部特性;)理想运算放大器的