欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    离散数学近世代数代数结构.ppt

    • 资源ID:49405597       资源大小:1.91MB        全文页数:39页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    离散数学近世代数代数结构.ppt

    离散数学近世代数代数结构现在学习的是第1页,共39页 第四篇第四篇 代数系统代数系统现在学习的是第2页,共39页由集合以及集合上的运算组成的数学结构由集合以及集合上的运算组成的数学结构称为称为代数结构(也称为代数系统)代数结构(也称为代数系统).代数结构代数结构是抽象代数的一个主要内容是抽象代数的一个主要内容.研究的研究的中心问题:中心问题:集合上的抽象运算及运算的性质和结构。集合上的抽象运算及运算的性质和结构。什么是代数结构什么是代数结构现在学习的是第3页,共39页研究意义:研究意义:研究抽象代数结构的基本特征和基本结构,研究抽象代数结构的基本特征和基本结构,不仅能深化代数结构的理论研究,也能扩展其应用领不仅能深化代数结构的理论研究,也能扩展其应用领域。域。应用:应用:现代数学现代数学,如拓扑学、泛函分析,等,如拓扑学、泛函分析,等计算机科学计算机科学:如:如半群半群自动机、形式语言自动机、形式语言群群纠错码的设计纠错码的设计格和布尔代数格和布尔代数计算机硬件设计、通讯系统设计计算机硬件设计、通讯系统设计其他其他其他其他:代数方程求解、物理、化学:代数方程求解、物理、化学关于代数结构关于代数结构现在学习的是第4页,共39页主要内容主要内容n n第第12章章 代数结构的概念代数结构的概念n n第第13章章 半群与群半群与群n n第第14章章 环和域环和域 n n第第15章章 格与布尔代数格与布尔代数 现在学习的是第5页,共39页第第12章章 代数结构的概念代数结构的概念 第第1节节 代数运算及其性质代数运算及其性质 第第2节节 代数结构的同态和同构代数结构的同态和同构n重点:重点:代数结构的判定与构造,代数结构关系:同态、同构代数结构的判定与构造,代数结构关系:同态、同构代数结构的判定与构造,代数结构关系:同态、同构代数结构的判定与构造,代数结构关系:同态、同构n难点:难点:同态基本定理同态基本定理同态基本定理同态基本定理现在学习的是第6页,共39页代数运算、代数结构代数运算、代数结构S是非空集合,映射是非空集合,映射 f:SnS称为称为S上的上的n元运算元运算。写法写法:f(a,b)=c可改写为可改写为:a f b=c例如,在集合例如,在集合R上,对任意两个数所进行的普通加法和上,对任意两个数所进行的普通加法和乘法,都是在集合乘法,都是在集合R上的二元运算。上的二元运算。由集合由集合S及及S上的封闭运算上的封闭运算f1,f2,fk所组成的系统就称所组成的系统就称为一个代数系统,记作为一个代数系统,记作,或或(S,f1,f2,,fk).现在学习的是第7页,共39页例例1Z;+,Z;-,N,-,T,F;,P(A);,是否代数系统?是否代数系统?需要满足的条件?需要满足的条件?对于集合对于集合A,称,称运算运算f:A B 是封闭的是封闭的,如果如果B A。现在学习的是第8页,共39页一个代数系统需要满足以下三个条件:一个代数系统需要满足以下三个条件:n有一个非空集合有一个非空集合S;n有一些建立在集合有一些建立在集合S上的运算;上的运算;n这些运算在这些运算在S上是封闭的。上是封闭的。代数系统的基本概念代数系统的基本概念现在学习的是第9页,共39页例例在整数集合在整数集合 I 上定义上定义 如下:如下:对任何对任何其中的其中的+,分别是通常数的加法和乘法。分别是通常数的加法和乘法。那么那么 是一个从是一个从 I2 到到 I 的函数,的函数,易知易知 在集合在集合 I 上是封闭的,上是封闭的,是是 一个代数系统。一个代数系统。现在学习的是第10页,共39页 如果两个代数系统有相同个数的运算符,每个相对如果两个代数系统有相同个数的运算符,每个相对应的运算符的元数是相同的,则称这两个代数系应的运算符的元数是相同的,则称这两个代数系统是统是同类型的同类型的。定义:定义:两个代数系统两个代数系统(U,)与与(U,*),如果满足下列,如果满足下列条件:条件:U U;若若a U,b U,则,则a*b=a b;则称;则称(U,*)是是(U,)的子系统或的子系统或子代数子代数。代数系统的基本概念代数系统的基本概念 现在学习的是第11页,共39页设有代数系统设有代数系统(S,*),对,对 a,b,c S,如果有,如果有(a*b)*c=a*(b*c),则称此代数系统的运算满足则称此代数系统的运算满足结合律结合律。例:例:设设A是一个非空集合,是一个非空集合,是是A上的二元运算,对于任意上的二元运算,对于任意a,b A,有,有ab=b,证明:,证明:是满足结合律的。是满足结合律的。证:证:对于任意的对于任意的a,b,c A,(a b)c=b c=c而而a(bc)=a c=c,(ab)c=a(bc)是满足结合律的是满足结合律的.代数运算及其性质代数运算及其性质 现在学习的是第12页,共39页交换律交换律设有代数系统设有代数系统(S,*),如果对于,如果对于 a,b S,有,有a*b=b*a,则称此代数系统的运算,则称此代数系统的运算“*”满足交换律。满足交换律。例:例:在整合集合在整合集合 I 上定义运算上定义运算 :对任何对任何其中的其中的+,分别是通常数的加法和乘法。分别是通常数的加法和乘法。可以满足交换律吗?可以满足交换律吗?现在学习的是第13页,共39页分配律分配律(左分配,右分配左分配,右分配)设有代数系统(S,*),对a,b,cS,如果有a(b*c)=(ab)*(ac),则称 “”运算对“*”运算满足左分配律。若“*”对“”满足a*(bc)=(a*b)(a*c),则称“*”对“”满足左分配律若有(a*b)c=(a*c)(b*c),则称“”对“*”满足右分配律。若(ab)*c=(a*c)(b*c),则称“*”运算对“”运算满足右分配律。例:代数系统(N,+,)。其中+,分别代表通常数的加法和乘法。是否满足交换律?是否满足交换律?现在学习的是第14页,共39页单位元单位元(幺元幺元)一个代数系统一个代数系统(S,*),若存在一个元素若存在一个元素e U,使得对,使得对 x S,有:,有:e*x=x*e=x,则,则称称 e 为对于运算为对于运算“*”的的单位元单位元,也称幺元也称幺元。注意注意:单位元是跟运算有关系的,不同的运单位元是跟运算有关系的,不同的运算可能单位元是不一样的。算可能单位元是不一样的。现在学习的是第15页,共39页 左单位元或右单位元左单位元或右单位元(左幺元或右幺元左幺元或右幺元)一个代数系统一个代数系统(S,),若存在一个元素若存在一个元素el S,使得对,使得对 x S,有:,有:el x=x,则称,则称 el 为对于运算为对于运算“”的的左幺左幺元元。若存在一个元素若存在一个元素er S,使得对,使得对 x S,有:,有:x er=x,则,则称称 er为对于运算为对于运算“”的的右幺元右幺元。现在学习的是第16页,共39页例例 设代数系统设代数系统(N,*),*的定义为:的定义为:对对那么,那么,(N,*)有没有单位元?左幺元?右幺元有没有单位元?左幺元?右幺元?解:解:对任何对任何 因此因此 1 是右幺元。是右幺元。但但 1 不是左幺元,因为不是左幺元,因为所以所以(N,*)没有左幺元,当然也就没有幺元。没有左幺元,当然也就没有幺元。现在学习的是第17页,共39页定理n代数系统代数系统(U,)的单位元若存在,则唯一。的单位元若存在,则唯一。证:证:设设 e 为运算为运算“”的幺元,另有一单位的幺元,另有一单位元元 e,e是幺元,是幺元,对对 x U,有,有e x=x,取,取x=e ,则,则e e =e 又又 e 是幺元,是幺元,对对 x U,有,有x e =x,取取x=e,则,则e e =e 由由 式可得:式可得:e =e,即幺元唯一。,即幺元唯一。现在学习的是第18页,共39页零元零元代数系统代数系统(S,),如果存在一个元素,如果存在一个元素 S,使得对,使得对 x S有:有:x=x=,则称,则称为对于运算为对于运算“”的的零元零元。若只满足若只满足 x=,则,则称为称为左零元左零元。若只满足若只满足 x=,则,则称为称为右零元右零元。例例:代数系统代数系统(I,)的零元是什么?的零元是什么?在所有在所有n阶方阵集合阶方阵集合M上的代数系统上的代数系统(M,),零元是什,零元是什么?么?在在I+上定义一个二元运算取极小上定义一个二元运算取极小“Min”,(I+,Min)的的零元是什么?零元是什么?现在学习的是第19页,共39页性质、定理性质、定理定理定理 一个代数系统,其零元若存在,则唯一。一个代数系统,其零元若存在,则唯一。定理定理 一个代数系统一个代数系统(S,),若集合,若集合 A 中元素的个数大于中元素的个数大于1,且该代数系统存在幺元,且该代数系统存在幺元 e 和零元和零元,则,则 e。证明:用反证法,设证明:用反证法,设=e,则对于任意的,则对于任意的x A,必有,必有 x=e x=x=e,即对于即对于A中所有元素都是相同的,这与中所有元素都是相同的,这与A中含有多个元素相中含有多个元素相矛盾。矛盾。现在学习的是第20页,共39页逆元逆元一个存在幺元一个存在幺元 e 的代数系统的代数系统(U,),如果对,如果对 U 中的中的元素元素 x 存在存在 x-1,使得,使得 x-1 x=x x-1=e,则称则称x-1为为x的的逆元逆元。n若若 x x-1=e,则称,则称 x-1 为为 x 的的右逆元右逆元。n若若 x-1 x=e,则称,则称 x-1 为为 x 的的左逆元左逆元。n既是左逆元,又是右逆元,则称既是左逆元,又是右逆元,则称 x-1 为为 x 的一个的一个逆元逆元。现在学习的是第21页,共39页例子例子n对代数系统对代数系统(R,*),*为二元运算,定义为通常数的为二元运算,定义为通常数的乘法。乘法。R为实数集合。为实数集合。a R,a 0,a 的逆元是什么的逆元是什么?n对代数系统对代数系统(I,*),*为二元运算,定义为通常为二元运算,定义为通常数的乘法。数的乘法。I 为整数集合。为整数集合。哪些元素有逆元?哪些元素有逆元?n(R 1,*),*为二元运算,定义为通常数的乘法。为二元运算,定义为通常数的乘法。R 1为除了为除了 1 之外的实数集合。之外的实数集合。哪些元素有逆元?哪些元素有逆元?现在学习的是第22页,共39页注意注意因此,关于逆元,下述结论是正确的:因此,关于逆元,下述结论是正确的:当幺元存在时,才考虑逆元。当幺元存在时,才考虑逆元。逆元是针对具体元素而定的,有些元素可能有逆元,有逆元是针对具体元素而定的,有些元素可能有逆元,有些元素则可能没有逆元。如果些元素则可能没有逆元。如果 a 和和 b 都有逆元且都有逆元且 a b,则,则 a-1 和和 b-1 也不相同。也不相同。一个元素的逆元必须是代数系统内的元素。一个元素的逆元必须是代数系统内的元素。设设 e 幺元,只有当幺元,只有当 a b=e 和和 b a=e 同同时成立成立时,b才能是才能是 a 的逆元,如果只有一个成立,的逆元,如果只有一个成立,b 也不是也不是 a 的逆元。的逆元。现在学习的是第23页,共39页定理定理:设代数系统设代数系统(U,),运算,运算“”满足结合律,且满足结合律,且存在幺元存在幺元 e,那么对任意固定的,那么对任意固定的 x U,若,若 x 有逆元,则有逆元,则逆元是唯一的。逆元是唯一的。证明证明:设设 x 有两个逆元有两个逆元 x1-1和和x2-1,则,则x1-1 x x2-1 =x1-1 (x x2-1)=x1-1 e=x1-1同理同理 x1-1 x x2-1=(x1-1 x)x2-1=e x2-1=x2-1所以:所以:x1-1=x2-1现在学习的是第24页,共39页设设*是定义在集合是定义在集合A上的一个二元运算,如果对于任上的一个二元运算,如果对于任意的意的x A,都有,都有x*x=x,则称,则称*运算是运算是等幂等幂的。的。例例:S=1,2,4,在集合,在集合 p(S)定义两个二元运算,定义两个二元运算,分别表示集合的,分别表示集合的“并并”运算和集合的运算和集合的“交交”运算,运算,是等幂的?是等幂的?解:解:对于任意的对于任意的A p(S),有,有AA=A;AA=A 因此运算因此运算,都满足等幂律。都满足等幂律。等幂律等幂律现在学习的是第25页,共39页 设集合设集合S=,定义在,定义在S上的一个二上的一个二元运算如下表所示,试指出代数系统元运算如下表所示,试指出代数系统(S,)中各中各个元素的左、右逆元情况。个元素的左、右逆元情况。解:解:是幺元,是幺元,是是 的左逆元的左逆元,是是 的右逆元的右逆元;是是 、的左逆元,的左逆元,、是是 右逆元右逆元;是是 的左逆元的左逆元,是是 的右逆元;的右逆元;是是 的左逆元的左逆元,是是 的右逆元。的右逆元。例题例题现在学习的是第26页,共39页有限集合上运算的性质有限集合上运算的性质n*是封闭的是封闭的表上每个元素都属于表上每个元素都属于S。n*满足交换律满足交换律表中元素关于主对角线对称表中元素关于主对角线对称。n元素元素x为左零元为左零元x对应的行中每个元素都是对应的行中每个元素都是x。n元素元素x为右零元为右零元x对应的列中每个元素都是对应的列中每个元素都是x。n元素元素x为零元为零元x对应的行中每个元素都是对应的行中每个元素都是x且且x对应的列中每个元素对应的列中每个元素都是都是x。n元素元素x为左单位元为左单位元x对应的行与表头的行完全相同。对应的行与表头的行完全相同。n元素元素x为右单位元为右单位元x对应的列与表头的列完全相同。对应的列与表头的列完全相同。n元素元素x为单位元为单位元x对应的行与表头的行完全相同且对应的行与表头的行完全相同且x对应的列与表头对应的列与表头的列完全相同。的列完全相同。n元素元素x为左逆元为左逆元x对应的行中至少有一个单位元。对应的行中至少有一个单位元。n元素元素x为右逆元为右逆元x对应的列中至少有一个单位元对应的列中至少有一个单位元。n元素元素x与元素与元素y互为逆元互为逆元x所在行与所在行与y所在列交叉位置元素为单位元所在列交叉位置元素为单位元且且x所在列与所在列与y所在行交叉位置元素为单位元所在行交叉位置元素为单位元。*现在学习的是第27页,共39页代数结构之间的关系代数结构之间的关系为什么需要研究代数结构之间的关系?为什么需要研究代数结构之间的关系?在研究代数结构的过程中,所关心的常常是代数在研究代数结构的过程中,所关心的常常是代数结过中运算所满足的性质,不关心具体的运算,结过中运算所满足的性质,不关心具体的运算,而对于遵循相同运算规律的系统只需要研究其中而对于遵循相同运算规律的系统只需要研究其中一个就可以了解其它的系统一个就可以了解其它的系统.考察下列代数考察下列代数:I,;Q,+;R+,min;P(S),;P(S),此此5 5个代数都有相同的构成成分个代数都有相同的构成成分:同样个数的运算同样个数的运算且对应运算元数相且对应运算元数相(1(1个二元运算个二元运算););满足同样的满足同样的Y Y运算律运算律(交换律交换律,结合律结合律););存在单位元。存在单位元。称具有这些性质的代数是同一类称具有这些性质的代数是同一类(代数结构的类代数结构的类)现在学习的是第28页,共39页 设设(U,)和和(V,*)是两个同类型的代数系统是两个同类型的代数系统,与与*都是二元运算都是二元运算,如果存在映射如果存在映射f:UV,使得对,使得对 x1,x2 U,有有f(x1 x2)=f(x1)*f(x2),称,称f是一个从是一个从(U,)到到(V,*)的同态映射,或说的同态映射,或说(U,)与与(V,*)是同态的。是同态的。若若f是满射,则称是满射,则称f是是(U,)到到(V,*)的满同态映射,的满同态映射,(U,)与与(V,*)是满同态。是满同态。若若f是单射,则称是单射,则称f是是(U,)到到(V,*)的单同态映射,的单同态映射,(U,)与与(V,*)是单同态。是单同态。若若f是双射,则称是双射,则称f是是(U,)到到(V,*)的同构映射,的同构映射,(U,)与与(V,*)是同构的。是同构的。同态与同构同态与同构现在学习的是第29页,共39页例例解:解:作映射作映射 f:IA,abcaabcbbabcacb是偶数是偶数是奇数是奇数1.设集合设集合A=a,b,c,在,在A上定义运算。如下表,那么,上定义运算。如下表,那么,V1=(I,+),V1=(A,),其中,其中 I 是正整数集合,是正整数集合,+运算是普运算是普通的加法。通的加法。V1 和和V1是否同是否同态态?2.构造构造与与之间的同态映射之间的同态映射.(课堂练习课堂练习)现在学习的是第30页,共39页例例解:解:作双射作双射 f:A1A2,f(1)=b,f(2)=d,f(3)=c,f(4)=aabcdabbbdbaadbccbcadaacd*123414124242343143341211设代数系统设代数系统V1=(A1,*),V2=(A2,),其中其中A1=1,2,3,4,A2=a,b,c,d,*和和 的运算分的运算分别别如下表,如下表,V1 和和 V2 是否同构?是否同构?现在学习的是第31页,共39页例例n代数结构代数结构R+;*,R;+同构吗?同构吗?现在学习的是第32页,共39页证明:证明:与与同构同构下面证明二者之间存在双射关系且满足同态方程。下面证明二者之间存在双射关系且满足同态方程。ni)建立双射关系:建立双射关系:n 令令f:R+R,f(x)=lnxn 显然,显然,f是单射是单射n y R,x=ey 使使y=lney=lnx=f(x)n f 是满射是满射n f是从是从R+到到R的双射的双射nii)f 满足同态方程:满足同态方程:n f(a*b)=ln(a*b)=lna+lnb=f(a)+f(b)n综上,综上,同构于同构于现在学习的是第33页,共39页定理定理设代数系统设代数系统 和和 其其中中*,*,都都是是二二元元运运算算,是是V1到到V2的的满满同同态态映映射射,则则(1)如果如果*是可交换的,则是可交换的,则*也是可交换的;也是可交换的;(2)如果如果*是可结合的,则是可结合的,则*也是可结合的;也是可结合的;(3)如果如果*对对是可分配的是可分配的,则则*对对也是可分配的;也是可分配的;(4)若若e是是*的单位元,则的单位元,则(e)是是*的单位元的单位元;(5)若若 是是*的零元,则的零元,则()是是*的零元的零元;(6)若若a关关于于运运算算*可可逆逆,且且逆逆元元为为b,则则(a)关关于于运运算算*也也可可逆,逆元为逆,逆元为(b)。现在学习的是第34页,共39页性质保持性质保持n1.对于同构:对于同构:保持结合律、交换律、分配律;单位保持结合律、交换律、分配律;单位元、逆元、零元相应存在元、逆元、零元相应存在.n2.对于同态对于同态 单向保持性质单向保持性质现在学习的是第35页,共39页可以证明可以证明,代数系统间的同构关系是等价关系。代数系统间的同构关系是等价关系。自反:自反:构造映射构造映射f:U U,满足满足 f(x)=x对称对称:f是是U到到V的同构映射,则的同构映射,则f-1是是V到到U的的同构映射。同构映射。(U,),(V,*),(W,),如果,如果f是是U到到V同同构映射,构映射,g是是V到到W的同构映射,则可证的同构映射,则可证 gof 是是U到到W的的 同构映射。同构映射。代数系统间同构关系是等价关系代数系统间同构关系是等价关系现在学习的是第36页,共39页同态核同态核nf是一个从是一个从(U,)到到(V,*)的同态映射的同态映射,e是是(V,*)的单位元。的单位元。定义集合定义集合 K(f)=x x S且且f f(x)e为同态核,记为为同态核,记为K(f)。n定理定理 设设f为代数结构为代数结构到到的的同态,如果同态,如果K(f),那么,那么为为的子代数。的子代数。现在学习的是第37页,共39页同态象同态象nf是一个从是一个从(U,)到到(V,*)的同态映射的同态映射,e是是(V,*)的单位元。的单位元。定义集合定义集合 f(U)=f f(x)x U为同态为同态象象。现在学习的是第38页,共39页小结小结n本章介绍了代数结构的基本概念,是后续章节学习的本章介绍了代数结构的基本概念,是后续章节学习的基础,主要知识点有:基础,主要知识点有:1.代数运算的概念及其性质;代数运算的概念及其性质;2.代数结构的概念;代数结构的概念;3.代数结构中特殊元素;代数结构中特殊元素;4.同态与同构同态与同构.其中,运算以及代数结构的概念,特殊元素的判定,同其中,运算以及代数结构的概念,特殊元素的判定,同态、同构的证明是学习的重点。态、同构的证明是学习的重点。n作业作业1 反复阅读教材反复阅读教材(结合例题、练习结合例题、练习)、思考、思考2 书面作业:书面作业:p249 2、5、6、8、10现在学习的是第39页,共39页

    注意事项

    本文(离散数学近世代数代数结构.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开