九年级中考数学第一轮复习:二次函数的图像及其性质 卷二.doc
-
资源ID:4959765
资源大小:211.17KB
全文页数:6页
- 资源格式: DOC
下载积分:14金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
九年级中考数学第一轮复习:二次函数的图像及其性质 卷二.doc
九年级中考数学第一轮复习:二次函数的图像及其性质 卷二一、选择题1. 二次函数y=(x-1)2+3的图象的顶点坐标是()A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)2. 已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则n的值为()A.-2B.-4C.2D.43. 抛物线y2(x3)21的顶点坐标是()A. (3,1)B. (3,1)C. (3,1)D. (3,1)4. 抛物线yx2,yx2,yx2的共同性质是:都是开口向上;都以点(0,0)为顶点;都以y轴为对称轴;都关于x轴对称其中正确的个数有()A. 1个 B. 2个 C. 3个 D. 4个5. 在平面直角坐标系中,对于二次函数y=(x-2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到6. 将二次函数y=x2-4x+a的图象向左平移一个单位,再向上平移一个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是()A.a>3B.a<3C.a>5D.a<57. 如果将抛物线yx22向下平移1个单位,那么所得新抛物线的表达式是()A. y(x1)22 B. y(x1)22C. yx21 D. yx238. 以x为自变量的二次函数yx22(b2)xb21的图象不经过第三象限,则实数b的取值范围是()A. b B. b1或b1C. b2 D. 1b29. 要将抛物线yx22x3平移后得到抛物线yx2,下列平移方法正确的是()A. 向左平移1个单位,再向上平移2个单位B. 向左平移1个单位,再向下平移2个单位C. 向右平移1个单位,再向上平移2个单位D. 向右平移1个单位,再向下平移2个单位10. 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位: s)之间的函数关系如图所示.下列结论:小球在空中经过的路程是40 m;小球抛出3秒后,速度越来越快;小球抛出3秒时速度为0;小球的高度h=30 m时,t=1.5 s.其中正确的是()A.B.C.D.11. 若二次函数yx2mx的对称轴是x3,则关于x的方程x2mx7的解为()A. x10,x26 B. x11,x27 C. x11,x27 D. x11,x2712. 已知抛物线yax2bxc(ba0)与x轴最多有一个交点现有以下四个结论:该抛物线的对称轴在y轴左侧;关于x的方程ax2bxc20无实数根;abc0;的最小值为3.其中,正确结论的个数为()A. 1个 B. 2个 C. 3个 D. 4个二、填空题13. 若二次函数y=ax2+bx的图象开口向下,则a0(填“=”或“>”或“<”). 14. 如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是. 15. 竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时达到相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=. 16. 已知抛物线y=ax2+4ax+4a+1(a0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是. 17. 已知抛物线y=ax2+bx+c(a0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:b>0;a-b+c<0;b+2c>0;当-1<x<0时,y>0,正确的是(填写序号). 18. 某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0)未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元通过市场调研发现,该时装单价每降1元,每天销量增加4件在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t· 为正整数)的增大而增大,a的取值范围应为_19. 已知函数y=的图象如图所示,若直线y=x+m与该图象恰有三个不同的交点,则m的取值范围为. 20. 如图,抛物线yx22x3与y轴交于点C,点D(0,1),点P在抛物线上,且PCD是以CD为底的等腰三角形,则点P的坐标为_三、解答题(本大题共7道小题)21. 已知二次函数y=2x2+bx+1的图象过点(2,3).(1)求该二次函数的表达式;(2)若点P(m,m2+1)也在该二次函数的图象上,求点P的坐标.22. 旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数发现每天的运营规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆已知所有观光车每天的管理费是1100元(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入租车收入管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?23. 在平面直角坐标系中,设二次函数y1(xa)(xa1),其中a0.(1)若函数y1的图象经过点(1,2),求函数y1的表达式;(2)若一次函数y2axb的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上若m<n,求x0的取值范围24. 如图,已知抛物线yx2mx3与x轴交于点A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标;(2)点P是抛物线对称轴l上的一个动点,当PAPC的值最小时,求点P的坐标25. 在平面直角坐标系xOy中,抛物线y=ax2+bx-与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P,-,Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.26. 如图,在平面直角坐标系中,直线yxm与x轴、y轴分别交于点A、点B(0,1),抛物线yx2bxc经过点B,交直线AB于点C(4,n)(1)分别求m、n的值;(2)求抛物线的解析式;(3)点D在抛物线上,且点D的横坐标为t(0t4),DEy轴交直线AB于点E,点F在直线AB上,且四边形DFEG为矩形(如图),若矩形DFEG的周长为p,求p与t的函数关系式和p的最大值27. 如图,抛物线的顶点为,与轴交于点,点为其对称轴上的一个定点(1)求这条抛物线的函数解析式;(2)已知直线是过点且垂直于轴的定直线,若抛物线上的任意一点到直线的距离为,求证:;(3)已知坐标平面内的点,请在抛物线上找一点,使的周长最小,并求此时周长的最小值及点的坐标 6 / 6