《初中数学总复习资料》专题36 解直角三角形-2018年中考数学考点总动员系列(原卷版).doc
-
资源ID:4964110
资源大小:674.11KB
全文页数:9页
- 资源格式: DOC
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
《初中数学总复习资料》专题36 解直角三角形-2018年中考数学考点总动员系列(原卷版).doc
2018年中考数学备考之黄金考点聚焦考点三十六:解直角三角形 聚焦考点温习理解一、锐角三角函数的定义在RtABC中,C90°,ABc,BCa,ACb正弦:sinA余弦:cosA余切:tanA二、特殊角的三角函数值sincostan30°45°160°三、解直角三角形解直角三角形的常用关系在RtABC中,C90°,则:(1)三边关系:a2b2c2;(2)两锐角关系:AB90°;(3)边与角关系:sinAcosB,cosAsinB,tanA;(4)sin2Acos2A1四、解直角三角形的应用常用知识1. 仰角和俯角:仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角来源:学科网ZXXK俯角:在视线与水平线所成的角中,视线在水平线下方的角叫做俯角2.坡度和坡角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i_坡角:坡面与水平面的夹角叫做坡角,记作,itan坡度越大,角越大,坡面_3.方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角名师点睛典例分类考点典例一、锐角三角函数的定义【例1】(2017年甘肃省兰州市西固区桃园中学中考数学模拟)如图,点A为边上的任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示cos的值,错误的是()A. B. C. D. 【答案】C【解析】ACBC,CDAB,+BCD=ACD+BCD,=ACD,cos=cosACD=,只有选项C错误. 故选C.考点:锐角三角函数的定义【点睛】掌握锐角三角函数的算法,正弦(sin)等于对边比斜边,余弦(cos)等于邻边比斜边,正切(tan)等于对边比邻边.【举一反三】1. (2017哈尔滨第8题)在中,则的值为( )A.B.C.D.2.(2017江苏无锡第18题)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tanBOD的值等于 学¥科网考点典例二、特殊角的三角函数值【例2】(甘肃省兰州市第36中学2017年九年级数学中考模拟)在ABC中,(tanA)2+|cosB|=0,则C的度数为()A. 30° B. 45° C. 60° D. 75°【答案】D考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理【点睛】利用特殊角的三角函数值进行数的运算,往往与绝对值、乘方、开方、二次根式相结合此题考查了特殊角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些特殊角的三角形函数值,也要注意运用三角形的内角和定理【举一反三】1. (山东省德州市2017年中考数学第三次模拟) 计算:tan45°sin30°( )。A. 2 B. C. D. 2.(2017山东烟台第14题)在中,则 考点典例三、解直角三角形【例3】(2017年天津市南开区兴华中学中考数学模拟)如图,已知在ABC中,ABC=30°,BC=8,sinA=,BD是AC边上的中线求:(1)ABC的面积;(2)ABD的余切值【答案】(1)16+8 ;(2)2 +2【解析】试题分析:(1)过点C作CEAB与点E,根据已知条件分别解BCE、ACE可得BE、CE、AE的长,即可计算SABC;(2)过点D作DHAB与点H知DHCE,由D是AC中点可得HE=AE、DH=CE,即可得cotABD来源:学科网ZXXK试题解析:(1)如图,过点C作CEAB与点E,在RTBCE中,BC=8,ABC=30°,BE=BCcosABC=8×=4,CE=BCsinABC=8×=4,在RTACE中,sinA=,AC=4,AE=8,则AB=AE+BE=8+4,故SABC=ABCE=×(8+4)×4=16+8;【点睛】本题考查了解直角三角形、勾股定理、三角形中位线定理,通过作辅助线构造直角三角形是解题的关键.【举一反三】(广东省广州市南沙区2016-2017学年九年级一模) 如图,在中,则BC=_.考点典例四、解直角三角形的实际运用【例4】(2017湖南株洲第23题)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为其中tan=2,无人机的飞行高度AH为500米,桥的长度为1255米求点H到桥左端点P的距离; 学+科网若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB【答案】求点H到桥左端点P的距离为250米;无人机的长度AB为5米设BCHQ于C在RtBCQ中,BC=AH=500,BQC=30°,CQ=1500米,PQ=1255米,CP=245米,HP=250米,AB=HC=250245=5米答:这架无人机的长度AB为5米考点:解直角三角形的应用仰角俯角问题【点睛】本题考查了解直角三角形的应用,解答本题的关键是理解仰角俯角的定义,及勾股定理的表达式,要注意根据题意构造直角三角形,并解直角三角形;注意掌握数形结合思想与方程思想的应用【举一反三】(2017湖南常德第24题)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)课时作业能力提升1. (浙江省宁波市李兴贵中学2018届九年级上册期末)在ABC中,C=90°,sinA=, 则tanA的值为()A.              B.                    C.                   D. 2. (2017年内蒙古赤峰二中中考数学二模)已知:sin(x)=sinx,cos(x)=cosx,sin(x+y)=sinxcosy+cosxsiny,则下列各式不成立的是(   )A. cos(45°)=   B. sin75°= C. sin2x=2sinxcosx   D. sin(xy)=sinxcosycosxsiny3. (2017广西百色第10题)如图,在距离铁轨200米处的处,观察由南宁开往百色的“和谐号”动车,当动车车头在处时,恰好位于处的北偏东方向上,10秒钟后,动车车头到达处,恰好位于处西北方向上,则这时段动车的平均速度是( )米/秒. A B C. 200 D3004. (2017黑龙江绥化第9题)某楼梯的侧面如图所示,已测得的长约为3.5米, 约为,则该楼梯的高度可表示为( )A米 B米 C米 D米 5. (2017重庆A卷第11题)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°0.64,cos40°0.77,tan40°0.84)学*科网A5.1米B6.3米C7.1米D9.2米6. (2017山东烟台第12题)如图,数学实践活动小组要测量学校附近楼房的高度,在水平底面处安置侧倾器得楼房顶部点的仰角为,向前走20米到达处,测得点的仰角为.已知侧倾器的高度为1.6米,则楼房的高度约为( )(结果精确到0.1米,)A米 B米 C.米 D米7. (2017辽宁大连第15题)如图,一艘海轮位于灯塔的北偏东方向,距离灯塔的处,它沿正南方向航行一段时间后,到达位于灯塔的南偏东方向上的处.此时,处与灯塔的距离约为 .(结果取整数,参考数据:)来源:学&科&网Z&X&X&K8. (2017广西贵港第16题)如图,点 在等边的内部,且,将线段绕点顺时针旋转得到,连接,则的值为 学*科网9. (2017郴州第22题)如图所示,城市在城市正东方向,现计划在两城市间修建一条高速铁路(即线段),经测量,森林保护区的中心在城市的北偏东方向上,在线段上距城市的处测得在北偏东方向上,已知森林保护区是以点为圆心,为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据: )10. (2017内蒙古呼和浩特第22题)如图,地面上小山的两侧有,两地,为了测量,两地的距离,让一热气球从小山西侧地出发沿与成角的方向,以每分钟的速度直线飞行,分钟后到达处,此时热气球上的人测得与成角,请你用测得的数据求,两地的距离长(结果用含非特殊角的三角函数和根式表示即可)11. (2017上海第21题)如图,一座钢结构桥梁的框架是ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且ADBC(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EFBC,垂足为点F,求支架DE的长12. (2017湖南张家界第19题)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像铜像由像体AD和底座CD两部分组成如图,在RtABC中,ABC=70.5°,在RtDBC中,DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°0.943,cos70.5°0.334,tan70.5°2.824)13. (2017海南第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,EAC=130°,求水坝原来的高度BC(参考数据:sin50°0.77,cos50°0.64,tan50°1.2)14. (2017新疆乌鲁木齐第21题)一艘渔船位于港口的北偏东方向,距离港口海里处,它沿北偏西方向航行至处突然出现故障,在处等待救援,之间的距离为海里,救援船从港口出发分钟到达处,求救援的艇的航行速度.,结果取整数)来源:Zxxk.Com来源:Z+xx+k.Com