平面向量与圆锥曲线的综合问题.doc
平面向量与圆锥曲线的综合问题例1 已知F1、F2分别是椭圆的左、右焦点.()若P是第一象限内该数轴上的一点,求点P的作标;()设过定点M(0,2)的直线l与椭圆交于同的两点A、B,且ADB为锐角(其中O为作标原点),求直线的斜率的取值范围.解析:本题主要考查直线、椭圆、平面向量的数量积等基础知识,以及综合运用数学知识解决问题及推理计算能力()易知,设则,又,联立,解得,()显然不满足题设条件可设的方程为,设,联立,由,得又为锐角,又综可知,的取值范围是例2 已知正三角形的三个顶点都在抛物线上,其中为坐标原点,设圆是的内接圆(点为圆心)(I)求圆的方程;(II)设圆的方程为,过圆上任意一点分别作圆的两条切线,切点为,求的最大值和最小值本小题主要考查平面向量,圆与抛物线的方程及几何性质等基本知识,考查综合运用解析几何知识解决问题的能力满分14分(I)解法一:设两点坐标分别为,由题设知解得,所以,或,设圆心的坐标为,则,所以圆的方程为解法二:设两点坐标分别为,由题设知又因为,可得即由,可知,故两点关于轴对称,所以圆心在轴上设点的坐标为,则点坐标为,于是有,解得,所以圆的方程为(II)解:设,则在中,由圆的几何性质得,所以,由此可得则的最大值为,最小值为例3 已知,直线,为平面上的动点,过点作的垂线,垂足为点,且()求动点的轨迹的方程;()过点的直线交轨迹于两点,交直线于点(1)已知,求的值;(2)求的最小值PBQMFOAxy解法一:()设点,则,由得:,化简得()(1)设直线的方程为:设,又,联立方程组,消去得:,由,得:整理得:解法二:()由得:,所以点的轨迹是抛物线,由题意,轨迹的方程为:()(1)由已知,得则:过点分别作准线的垂线,垂足分别为,则有:由得:,即()(2)解:由解法一,当且仅当,即时等号成立,所以最小值为同步练习1 设为抛物线的焦点,为该抛物线上三点,若,则( B )A9B6C4D32 设分别是双曲线的左、右焦点若点在双曲线上,且,则( B )A BCD 3已知是椭圆的两个焦点满足·0的点总在椭圆内部,则椭圆离心率的取值范围是(C )A(0,1) B(0, C(0,) D,1)4 已知椭圆的左、右焦点分别为F1、F2,且|F1F2|=2c,点A在椭圆上,=0,则椭圆的离心率e=( )ABCD5 P是抛物线上的动点,点A(0,-1),点M 满足,则点M的轨迹方程是( A )A) (B) (C) (D)6 .已知两点M(2,0)、N(2,0),点P为坐标平面内的动点,满足0,则动点P(x,y)的轨迹方程为 ( B )A.B.C.D.7设直线过点P(0,3),和椭圆顺次交于A、B两点,若 则l的取值范围为_8已知点,动点满足,则动点P的轨迹方程是_ 9椭圆E的中心在原点O,焦点在轴上,其离心率, 过点C(1,0)的直线与椭圆E相交于A、B两点,且满足点C 满足(1)用直线的斜率k ( k0 ) 表示OAB的面积;(2)当OAB的面积最大时,求椭圆E的方程。解:(1)设椭圆E的方程为( ab0 ),由e =a2=3b2 故椭圆方程x2 + 3y2 = 3b2 设A(x1,y1)、B(x2,y2),由于点C(1,0)分向量的比为2, 即 由消去y整理并化简得 (3k2+1)x2+6k2x+3k23b2=0由直线l与椭圆E相交于A(x1,y1), B(x2,y2)两点得: 而SOAB 由得:x2+1=,代入得:SOAB = (2)因SOAB=,当且仅当SOAB取得最大值此时 x1 + x2 =1, 又 =1 x1=1,x2 =2将x1,x2及k2 = 代入得3b2 = 5 椭圆方程x2 + 3y2 = 5 10在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和(I)求的取值范围;II)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由解:()由已知条件,直线的方程为,代入椭圆方程得整理得直线与椭圆有两个不同的交点和等价于,解得或即的取值范围为()设,则,由方程,又而所以与共线等价于,将代入上式,解得由()知或,故没有符合题意的常数