潮州碳纤维项目实施方案(参考模板).docx
泓域咨询/潮州碳纤维项目实施方案潮州碳纤维项目实施方案xxx集团有限公司目录第一章 项目背景及必要性8一、 体育休闲及汽车领域需求或稳定增长,压力容器有望保持较高景气度8二、 双碳战略有望成为碳纤维行业需求增长的核心动力10三、 现状:碳纤维景气度上行,主要驱动力来自15四、 构建高水平开放格局,开拓合作共赢新局面18第二章 市场分析21一、 各领域应用性能要求存在差别,2025国内市场空间有望达到230亿元21二、 政策加码利好发展,国产化替代前景广阔26三、 碳纤维性能优势突出,景气度持续上行27第三章 项目概况30一、 项目名称及项目单位30二、 项目建设地点30三、 可行性研究范围30四、 编制依据和技术原则30五、 建设背景、规模31六、 项目建设进度33七、 环境影响33八、 建设投资估算33九、 项目主要技术经济指标34主要经济指标一览表34十、 主要结论及建议36第四章 建筑工程说明37一、 项目工程设计总体要求37二、 建设方案38三、 建筑工程建设指标39建筑工程投资一览表39第五章 选址分析41一、 项目选址原则41二、 建设区基本情况41三、 构建现代产业体系,引领经济高质量发展44四、 全面深化改革,营造良好发展环境45五、 项目选址综合评价47第六章 SWOT分析48一、 优势分析(S)48二、 劣势分析(W)49三、 机会分析(O)50四、 威胁分析(T)50第七章 发展规划56一、 公司发展规划56二、 保障措施57第八章 建设进度分析60一、 项目进度安排60项目实施进度计划一览表60二、 项目实施保障措施61第九章 环境保护分析62一、 编制依据62二、 环境影响合理性分析62三、 建设期大气环境影响分析63四、 建设期水环境影响分析65五、 建设期固体废弃物环境影响分析66六、 建设期声环境影响分析66七、 建设期生态环境影响分析68八、 清洁生产68九、 环境管理分析70十、 环境影响结论71十一、 环境影响建议71第十章 原辅材料分析73一、 项目建设期原辅材料供应情况73二、 项目运营期原辅材料供应及质量管理73第十一章 节能说明75一、 项目节能概述75二、 能源消费种类和数量分析76能耗分析一览表77三、 项目节能措施77四、 节能综合评价78第十二章 投资方案80一、 投资估算的依据和说明80二、 建设投资估算81建设投资估算表85三、 建设期利息85建设期利息估算表85固定资产投资估算表87四、 流动资金87流动资金估算表88五、 项目总投资89总投资及构成一览表89六、 资金筹措与投资计划90项目投资计划与资金筹措一览表90第十三章 经济效益评价92一、 经济评价财务测算92营业收入、税金及附加和增值税估算表92综合总成本费用估算表93固定资产折旧费估算表94无形资产和其他资产摊销估算表95利润及利润分配表97二、 项目盈利能力分析97项目投资现金流量表99三、 偿债能力分析100借款还本付息计划表101第十四章 项目招标、投标分析103一、 项目招标依据103二、 项目招标范围103三、 招标要求103四、 招标组织方式105五、 招标信息发布107第十五章 总结分析108第十六章 附表附件110营业收入、税金及附加和增值税估算表110综合总成本费用估算表110固定资产折旧费估算表111无形资产和其他资产摊销估算表112利润及利润分配表113项目投资现金流量表114借款还本付息计划表115建设投资估算表116建设投资估算表116建设期利息估算表117固定资产投资估算表118流动资金估算表119总投资及构成一览表120项目投资计划与资金筹措一览表121本报告基于可信的公开资料,参考行业研究模型,旨在对项目进行合理的逻辑分析研究。本报告仅作为投资参考或作为参考范文模板用途。第一章 项目背景及必要性一、 体育休闲及汽车领域需求或稳定增长,压力容器有望保持较高景气度据赛奥碳纤维预计,体育休闲领域碳纤维需求有望保持5%年均复合增长率。体育领域碳纤维主要用于球杆球拍、滑雪杆、自行车及钓鱼竿等,通常每年按照4%-5%稳定增长。2020年受疫情影响,群体运动器材大幅下滑,个人运动休闲器材有所上升,整体增速有所回落。2021年,部分国家开始放开群体运动,体育器材需求回升,全球需求由2020年的1.54万吨增加至2021年1.85万吨,同比增长20.13%。后续有望保持5%年均复合增长。双碳目标促进汽车节能减排,据赛奥碳纤维预计汽车领域碳纤维需求有望达到10%年均复合增长。碳纤维复合材料应用于汽车领域具有质量轻、强度高、抗冲击性好、减震隔音性能高的优势。同时还可以提高汽车集成度,减少零部件,有助于降低汽车生产线投资规模。当前碳纤维复合材料在汽车领域应用进程缓慢的主要原因是成本较高。2021年的市场需求为9500吨,对比2020年的12500吨,降低3000吨,其主要原因是宝马公司在2020年底停产复合材料车型I8,在2021年7月停产了I3。从全周期轻量化价值出发,碳纤维复材除了节能降本外,在绿色环保方面十分有优势,当前有从F1赛车、豪华车逐步扩大应用的趋势。2020年推出的雪佛兰C8车架部分采用了弧形拉挤的碳纤维复合材料。2021年3月,廊坊的飞泽复材为蔚来ES6(中国第一款批量采用碳纤维的车款)生产的5万套碳纤维复材后地板开始下线。全球压力容器领域碳纤维需求有望达到20%年均复合增长率。高压气态储氢是目前唯一商用的储氢技术,正不断朝着轻质高压、高质量/体积储氢密度方向发展。为推进氢能技术产业化,2018-2020年国家重点研发计划启动实施“可再生能源与氢能技术”重点专项。其中科技部通过“可再生能源与氢能技术”重点专项部署了27个氢能研发项目,研发经费投入约5亿元。2020年12月,斯林达车用IV型储氢瓶通过“三新”评审,成为国内首家通过“三新”评审的车用压缩氢气塑料内胆碳纤维全缠绕气瓶制造厂家。根据相关政策以及预测,2022年,中国将至少新增10,000辆氢能源车,据美国能源部测算,高压氢气瓶采用碳纤维要实现规模经济效益需要性能达到T700或以上的同时价格达到12.6美元/kg。截至2025年我国氢燃料电池汽车总计规划推广数量达6.6万辆,有望全部落地助推氢能产业发展。2021年812月,国内五大氢燃料电池汽车示范城市群落地,山东省“氢进万家”科技示范项目正式实施。从各个示范城市群的规划目标来看,到2025年,预计可以推广超3.8万辆氢燃料电池汽车。据高工氢电统计,截至到2025年,我国氢燃料电池汽车总计规划推广数量可达6.6万辆。二、 双碳战略有望成为碳纤维行业需求增长的核心动力双碳战略推动光伏风电装机需求增长,风电叶片与单晶炉热场碳纤维应用有望成为需求增长核心动力。2021年全球已有130多个国家提出了“零碳”或“碳中和”气候目标,双碳目标下以光伏和风电为代表的清洁能源加速发展。据GWEC预测,2021-2026年全球风电新增装机可达650.5GW,年均复合增长6.6%,其中海上风电新增装机111.7GW,占比达17.2%,中国风电新增装机可达280GW,年均复合增长率11.3%。中电联2021-2022年度全国电力供需形势分析预测报告预测2022年国内风电新增规模可达50GW,据国家能源局统计2021年海风新增装机16.9GW,2022年第一季度风电新增装机7.9GW,预计2021-2026年中国风电装机规模有望达到372GW,其中海上风电新增装机111.2GW;在此基础上参考GWEC预测,预计2021-2026年全球风电新增装机规模有望达到725.4GW,其中海上风电新增装机规模160.7GW。据CPIA预测,2022-2025年全球光伏年均新增装机可达232-286GW,中国光伏年均新增装机可达83-99GW。参考中电联2021-2022年度全国电力供需形势分析预测报告预测2022年光伏新增规模有望达到90GW,国家能源局统计2022年一季度国内光伏新增装机13.2GW,预计未来全球及国内光伏装机量有望达到CPIA乐观预期。维斯塔斯风电叶片巧用拉挤板拼粘工艺促进碳纤维大规模使用,拉挤碳梁主要原材料为树脂及T300级24K、48K碳纤维。从风电叶片碳纤维发展历史看,最早采用经典的预浸料铺放,由于成本太过昂贵,通常用真空袋工艺,因此出现了生产效率低下,产品性能差等问题。后来借鉴玻璃纤维的工艺方法,采用多层织物真空灌注,但是不同于单丝直径较粗的玻纤的浸润性,要想灌透多层的碳纤维织物,织物本身必须留出树脂的流道,这就导致织物需要特殊的技术,进而增加了成本,同时很难保证织物在树脂的冲击之下纤维的直线度,直接影响了复合材料的性能。当维斯塔斯采用了拉挤板拼粘方法后,无论性能还是成本都对预浸料铺放和多层织物灌注工艺展现出了压倒性的优势,碳纤维的用量飞速增长。据赛奥碳纤维,2019年风电叶片行业用碳纤维量超过2万吨,其中80%就是用于生产拉挤碳梁片材。据光威复材投资者调研纪要,风电碳梁的主要原材料为树脂及T300级24K、48K碳纤维。维斯塔斯碳梁叶片制作技术核心专利2022年7月到期,其他厂商跟进有望提高碳纤维在叶片中渗透率。2002年7月19日维斯塔斯申请了风力涡轮机叶片专利(申请号CN02814543.7),提出了一种采用预制条带制造风电叶片的方法,其叶片主体采用玻璃纤维增强复合材料,叶片大梁采用碳纤维增强复合材料,相比传统制造技术有优良硬度和高强度同时又易于制造和低成本。2020年其他风电巨头如西门子-歌美飒、GE-LM、Nordex等,均在新的机型中采用了碳纤维拉挤板制造与测试样机。据光威复材投资者问答称,专利保护的不是碳梁的制作,光威拥有碳梁自主专利技术,目前已开展对国内风电叶片碳梁的应用推广。风机大型化推动碳纤维在叶片中渗透率不断提高。据GWEC2020全球叶片供应链报告统计,2014-2019年全球平均风轮直径尺寸持续在增加。2014年直径为91m-110m的风轮装机量最高,占据全球市场份额的49.5%。在2019年该产品份额下降至10.7%,风轮直径121m-140m成为主流产品,占全球市场份额的52.5%。驱动风轮直径增长的动力主要是:风电主机厂不断推出更大风轮直径的产品以降低LCOE(平准化度电成本,即对项目生命周期内的成本和发电量先进行平准化,再计算得到的发电成本);陆上风电低风速区装机需求增加需要更大的风轮直径;以中国和欧洲为代表的风电叶片直径大于150m的海上风电装机需求增加。维斯塔斯目前所有产品叶片大梁均采用碳梁;据明阳智能年报披露风机MYSE3.0-155开始在叶片中使用碳玻混合编织材料;据央视财经万吨碳纤维生产基地投产“黑黄金”价值凸显,中材科技董事长薛忠民表示目前风电叶片主流的结构材料还是玻璃纤维,正在开发的110米海上风电叶片必须使用碳纤维。影响碳纤维在风电叶片应用渗透率的关键因素或为碳纤维价格。据连云港中复连众复合材料集团有限公司专利一种采用拉挤工艺制造的单向片材制造风机叶片主梁或辅梁的方法,玻纤使用拉挤成型工艺制备得到的铺设片材铺设主梁或辅梁可有效提高材料的拉伸强度和弹性模量,同时能够减少叶片材料使用量,节约材料成本。据赛奥碳纤维,2022年3月,株洲时代最新发布的TMT185叶片长度达91米,全部使用玻璃纤维并适配4.5MW到6.5MW机型。风电叶片企业非常清晰碳纤维的减重优势及趋势,2021年风电领域碳纤维需求同比增速放缓主要受制于成本。据北极星风力发电网预计,碳纤维降低到80元/kg下游厂商的接受度会比较高,有望迎来大规模应用。装机增长叠加碳纤维渗透率提升,预计2026年国内风电领域碳纤维需求有望达到12.69万吨。结合前文对风电行业需求端的分析,基于以下假设对风电领域碳纤维需求进行测算:(1)参照基于工程经济学评估的风力机叶片长度设计拟合结果与明阳智能风机叶片参数,假设风电叶片重量与长度关系为=0.5272.473;(2)参考北极星风力发电网数据,主梁占叶片重量的1/3,拉挤工艺中主梁纤维含量为75%;(3)根据风能吸收公式=0.532,风力发电机功率P正比于风电叶片长度R的平方。(4)假设陆风平均单机容量按照每年0.5MW上升,海风平均单机容量按照每年1MW上升。(5)假设碳纤维成本逐渐下降能够满足风电大规模应用。(6)据赛奥碳纤维估计2021年全球风电碳纤维用量中维斯塔斯2.5万吨,国内风电企业0.45万吨,欧美其他风电企业0.35万吨,国内碳纤维用量2.25万吨,暂不考虑欧美其他风电企业国内碳纤维用量,估计2021年维斯塔斯国内碳纤维消耗1.8万吨,参考GWEC预计,国外风电装机CAGR月3.92%,假设维斯塔斯维持市占率不变。双碳目标推动光伏装机增长,单晶炉碳碳热场材料需求增长带动碳纤维需求。光伏行业竞争激烈,成本压力显著,采用碳纤维制作的碳碳复合材料相比传统石墨材料具有更优异的保温性能、更高的强度、更好的韧性,且不易破碎,可有效降低生产能耗、提升设备使用寿命,从而降低整个生产的成本。碳碳复合材料热场部件主要包括坩埚、导流筒、保温筒、加热器等,是单晶拉制炉热场系统的关键部件,在性价比方面相比传统石墨材质展现出了非常大的优势。受2021年碳碳复材领域碳纤维需求为8500吨,据2021全球碳纤维复合材料市场报告预测,未来4年碳碳复材领域全球碳纤维需求增速有望达到30%。随着光伏装机增长以及碳碳热场部件渗透率增加,预计2025年中国碳碳热场领域碳纤维市场规模有望达到12亿元。(1)假设容配比为1.15;(2)根据2020年和2021年单晶硅片市占率情况,假设2022-2025年单晶硅片的市占率为98%;(3)根据隆基股份2021年产能利用率情况,假设2022-2025年单晶硅片产能利用率分别为65%/60%/60%/60%;(4)随着单晶硅拉制炉容量的快速增大,热场尺寸也随之增大,假设2020年热场尺寸为26英寸,直径每年增加1英寸,坩埚密度和厚度不变,则坩埚重量随直径扩大而相应扩大,假设热场其他部件重量同坩埚重量等比例扩大;(5)由于热场尺寸不断增大,单晶炉产出提升,根据包头美科二期建设数据,假设每GW所需单晶炉从2020年的约90台,逐年下降5台,至2025年65台;(6)坩埚消耗量为2件/年、导流筒消耗量为0.67件/年、保温筒消耗量为0.67件/年、加热器消耗量为3件/年;(7)根据2019与2020年各产品的测算渗透率,预计2020年碳碳复合材料坩埚渗透率为95%,并每年增加1%、导流筒渗透率为60%,并每年增加5%、保温筒渗透率为55%,并每年增加5%、加热器渗透率为5%,并每年增加1%;(8)假设2021年存量硅片改造比例为20%,并每年减少2%;(9)根据奥赛纤维2021全球碳纤维复合材料市场报告,假设碳碳热场领域碳纤维单价为21.6美元/千克,即14.36万元/吨;(10)假设碳碳复材中碳纤维占比90%。三、 现状:碳纤维景气度上行,主要驱动力来自2015-2021年全球碳纤维需求年均复合增速达14.3%,中国碳纤维需求年均复合增速达24.5%。据赛奥碳纤维,2016-2019年全球碳纤维需求保持10%以上增长,在主要下游应用领域中,航空航天、体育休闲、汽车、混配模成型、压力容器、建筑补强等领域增速较为稳定,风电叶片、碳碳复材应用领域增长迅速。2020年受新冠疫情影响,航空复材领域需求大幅度降低,但风电叶片与碳碳复材领域碳纤维需求仍保持较高增速,整体碳纤维需求增速有所下滑,2021年风电、体育器材、碳碳复材及压力容器成为碳纤维需求增长的主力,推动碳纤维行业需求增速回升至10%以上。国内碳纤维需求从2015年的1.68万吨增长至2021年的6.24万吨,全球占比从31.7%提升至52.9%,年均复合增速达24.5%。2020年全球碳纤维市场规模下降主要源于碳纤维价值量占比较高的航空航天领域受到新冠疫情影响,航空复材领域需求大幅度降低,2021年市场规模上升幅度较大主要因为碳纤维供给不足,市场处于紧缺状态,碳纤维价格持续上行。从需求结构上看,2021年全球碳纤维需求量占比前三的领域依次是风电叶片28%、体育休闲16%、航空航天14%,国内碳纤维需求量占比前三的领域依次是风电叶片36%、体育休闲28%、碳碳复材11%。航空航天领域碳纤维附加值高,全球市场规模占比达35%,风电叶片与体育休闲领域碳纤维应用主要集中在中国。据赛奥碳纤维,2021年在航空航天领域应用的碳纤维价格为72美元/kg,体育休闲、电子电气、船舶、电缆芯领域为27.6美元/kg,压力容器、建筑领域为24美元/kg,风电领域为16.8美元/kg,碳碳复材、汽车、混配模成型为21.6美元/kg,以此计算全球与中国2021年市场结构,可以看出航空航天领域碳纤维附加值较高,全球市场规模占比达35%。风电叶片2021年全球碳纤维市场规模达5.54亿美元,其中中国为3.78亿美元,占比达68.2%。体育休闲2021年全球碳纤维市场规模达5.11亿美元,其中中国为4.83亿美元,占比达94.6%。全球碳纤维市场中占比前三的领域依次是航空航天、风电叶片、体育休闲,国内比前三的领域依次是体育休闲、风电叶片、碳碳复材。维斯塔斯在风电领域创新性的使用大丝束碳纤维促进了风电领域碳纤维需求的快速增长。使用碳纤维材料的风电叶片具备刚度高、重量轻、抗疲劳能力强等一系列优点。在2015年前,碳纤维应用在风电叶片的工艺主要采用预浸料或织物的真空导入,部分采用小丝束碳纤维,使用的碳纤维平均价格为23美元/kg,2016年维斯塔斯创新性地使用了大丝束碳纤维拉挤梁片,使用的碳纤维平均价格降低至14美元/kg。使用碳纤维的平均价格降低使得风电叶片碳纤维复合材料制品价格大幅降价,风电叶片碳纤维用量急剧增长。2021年风电装机报价的大幅下降叠加原材料成本上升挤压了风电产业链的利润,使得维斯塔斯及国内外众多计划采用碳纤维的企业的需求有所放缓。维斯塔斯风电叶片用碳梁部分交由国内的供应商光威复材和江苏澳盛加工,有效带动了国内风电领域碳纤维需求,但目前国内碳梁加工仍处于风电大丝束进口约85%,碳梁出口约85%这种两头在外的局面。碳碳热场部件需求高速增长驱动碳碳复材领域碳纤维需求上行。碳碳复材下游应用主要包括刹车盘市场、航天部件市场和碳碳热场部件市场。刹车盘市场、航天部件市场保持平稳发展。碳碳热场部件主要为单晶硅炉内的碳毡功能材料和坩埚、保温桶、护盘等,受“碳达峰、碳中和”目标推动,光伏企业隆基、晶科、中环、晶胜机电、晶澳大量采购单晶硅炉推动碳纤维需求上行。四、 构建高水平开放格局,开拓合作共赢新局面全面对接融入“双区”。调动全要素对接融入“粤港澳大湾区”和“深圳中国特色社会主义先行示范区”建设,突出抓好铁路、高速公路、城轨等重大交通项目,推进与大湾区“123交通圈”的“硬联通”,推动潮州港深度对接“双区”世界级港口群,做强“空铁高港”功能集成。用好泛珠三角区域合作机制,落实对口帮扶合作机制,在商贸物流、智能制造、生物医药、文化旅游、金融服务等重点领域加强与“双区”协同合作,推进科技研发合作、产业合作共建、制度机制衔接,推动现代服务业与制造业深度融合发展。把握“湾+带”联动机遇,积极参与“一核一带一区”建设,统筹用好陆海资源,推动临海特色高端产业加快集聚发展。大力拓展经济纵深。推动汕潮揭都市圈基础设施互联互通,实现三市中心城区“半小时通勤圈”和粤东地区“一小时交通圈”。推动都市圈公共服务共建共享,探索推进三市辖属公交企业同城化运营,提升公交服务水平和质量。推动都市圈社会治理联防联治,加强社会治安、生态环境等方面的沟通协调,强化信息互通和联合执法。探索建立跨省经济合作体制机制,推动产业合作共建,引导重大产业项目落地建设,推动跨省合作向纵深发展。完善跨区域合作支撑,以铁路、高速、海运等交通串联沿海经济带东翼与粤北、赣南、闽西南,形成以沿海港口为支点、沿线物流园区和客货枢纽为支撑、跨区域交通大动脉为纽带的“带区联动、陆海协调”发展格局,推动闽粤经济合作区升格为国家级省际经济合作试验区。积极参与“一带一路”建设。完善与“一带一路”沿线国家和地区在文化旅游、教育、科技、农业、医疗卫生等领域交流合作机制。打造国家农业对外开放合作试验区,推动农业对外开放合作,探索开展“一带一路”国际多式联运试点示范、“两国双园”“两国单园”园区发展模式。充分发挥国际产能合作协同机制作用,构筑互利共赢的产业链供应链合作体系,扩大双向贸易和投资。创新政务互访、国际合作协商议事等对外合作机制,深化与“一带一路”沿线城市之间交流合作。发挥海内外潮人积极作用。充分发挥侨乡资源优势,依托国际潮团联谊年会等平台,积极打造世界潮文化旅游体验目的地和交流平台,建设海丝文化重镇。加强与粤港澳大湾区潮商会对接联系,密切与世界潮人联盟、在外潮人乡亲的交往,争取各类国际潮人组织在潮州设立办事处。实施潮籍华裔政要、贤达潮州寻根工程,擦亮中国著名侨乡品牌,打造潮人文化中心。发挥各侨商潮团机构重要纽带作用,强化引才引智引技,推动更多在外潮人返潮投资、创业、旅游、养老、生活,将潮州打造成为全球潮人精神家园。第二章 市场分析一、 各领域应用性能要求存在差别,2025国内市场空间有望达到230亿元碳纤维产业发展形成大丝束、小丝束两种技术路线与标准模量、中高模量两个割裂市场。国际碳纤维行业发展始于20世纪60年代以日本和英国为主导的实验室技术开发,至70年代应用于体育休闲与航空航天结构件。80年代碳纤维在商业飞机领域应用实现重大突破,单线产能达到千吨每年,东丽公司开发完成了大部分现有产品型号。90年代卓尔泰克开始研发并推进低成本大丝束在工业领域的应用,形成了高性能小丝束和低成本大丝束两种技术路线,同时碳纤维行业开始了大规模并购整合,进入平稳发展期,至21世纪10年代碳纤维的应用急剧扩大,产业进一步整合。国内碳纤维行业早期在实验室进行技术研发产量较低,技术引进持续受到封锁限制,一直未能实现大规模工业化生产,至20世纪90年代基本停滞。21世纪初欧美对中国T300以上采取禁运措施,国内碳纤维企业大干快上,将实验室技术简单放大扩充产能,整体效果不佳。21世纪10年代以来国内碳纤维企业由40余家逐渐变为10余家,具备核心工艺技术的企业获得了较大的发展,形成了国内中高模量产品自产,标准模量与国际巨头充分竞争的市场格局。国内企业达产率已趋近国际水平,2021年经产能扩张全球占比已达30.6%。过去中国碳纤维行业达产率低的现象比较严重,产能利用率远低于国际水平,主要原因是核心工艺技术掌握不足,大部分企业尚达不到T300的水平,产品技术含量低、质量较差。近些年随着自主研发的突破产能利用率不断上升,已经从2015年的10.5%达到了2020年的51.2%,2021年达产率略有下滑主要系吉林化纤、中复神鹰、新创碳谷的产能建设完成是在下半年或年底,正常生产时间不足所致。从2020年来看,正常开车的企业达产率通常在65%以上,甚至有些企业已经达到90%。在达产率方面已经跨越了低达产率的历史阶段,趋近国际水平,经2021年产能扩张全球占比已达30.5%。碳纤维景气度走高,国际巨头进行了一定的产能扩张。碳纤维行业目前产能集中度较高,2021年CR5为57.1%。在全球需求的持续增长下,国际巨头也进行了一定的产能扩张。东丽旗下卓尔泰克继2021年6月碳纤维产能由1万吨扩张到1.3万吨后,于11月18日宣布注资1.3亿美元扩张产能至2万吨,计划于2023年1月完成。2021年5月韩国晓星宣布新建一条年产2500吨碳纤维生产线,预计将于2022年建成投产达到6500吨总产能,远期计划2028年达到2.4万吨总产能。国内碳纤维企业持续扩产,或改变世界碳纤维产能格局。2021年国内企业吉林化纤集团碳纤维产能增长近1.6万吨(含收购江城的产能),常州新创碳谷新建产能6000吨,中复神鹰扩产8000吨(含老厂产能调整),浙江宝旌扩产2000吨,整体扩产近3.2万吨。碳纤维行业规模效应显著,产能扩张可有效降低单位生产成本。碳纤维生产成本主要包括原丝生产成本和碳化成本,生产1kg碳纤维需要消耗2.1至2.2kg原丝。原丝生产成本主要包括原材料成本、能源成本、人工成本和制造成本,碳纤维生产成本构成也类似。据PAN基碳纤维制备成本构成分析及其控制探讨2010,某1100吨/年原丝产线单位成本为4.784万元/吨,规模上升至3500吨/年时单位成本可下降至为3.807万元/吨。据ORNLLowCostCarbonFiberOverview2011,碳纤维产线规模化可以使得碳纤维生产总成本降低2.03美元/磅,规模化降本占原总成本比例可达21%。碳纤维工艺复杂生产壁垒高,技术优化可有效降低单位生产成本。碳纤维生产主要分两步:第一步是原丝的制备,包括聚合和纺丝;第二步是原丝的预氧化和高温碳化,即碳纤维的制备。预氧化使得PAN线性分子链转化为耐热的梯形结构,使其在高温碳化时不熔不燃和保持纤维形态;碳化则是形成碳纤维,若制备高模量石墨纤维还需在氩气中对已碳化的碳纤维再进行高温石墨化处理。碳纤维降本通常以“新原料”、“新技术”和“新工艺”为方向,新原材料主要探索聚丙烯腈以外的原丝来制作碳纤维,新工艺通过干喷湿纺与大丝束碳纤维的方式提高生产效率,新技术研究提高原液浓度、加快聚合及纺丝速度,降低预氧化与碳化能耗的方法。例如中复神鹰大规模应用的干喷湿纺工艺具有纺丝速度快、碳化时间短、生产效率高等优点,在高性能小丝束碳纤维生产方面有效降低了成本,荣获2017年国家科技进步一等奖。国内碳纤维厂家及设备商逐渐掌握核心工艺技术,国产化有望降低设备投资。碳纤维进口设备价格通常为国产设备3-5倍。绝大部分欧美设备厂家对碳纤维的工艺、生产与维护的理解并不深入,主要是因为碳纤维生产商在与设备商的合作中对技术保密,只对设备方提出基本要求,待设备交付后再根据自己的技术经验进行一定的改造,技术的核心部分通常会在改造上,所以国际碳纤维巨头技术不断地进步,而一些欧美厂家的设备却极少有改进。国内碳纤维厂家通过多年使用欧美设备,自行改造解决大量工艺适配性问题,有些逐渐成为了设备专家。据光威复材、精功科技公告,光威复材子全资公司光威精机具备成套生产设备的设计、制造和安装以及生产线的建设的能力,可自产氧化炉、高温碳化炉、低温碳化炉、预浸料设备、涂胶机、混合反应釜等;精功科技通过与德国、意大利设备商合作和持续自主研发投入,已经具备千吨级成套碳化线交钥匙能力,2020年底交付吉林精功大丝束碳化线基本接近全国产,2020年初顺利交付韩国2000吨级碳纤维生产线预氧炉设备,风速均匀性和温度均匀性两项关键技术指标达到国际一流水平。以风电拉挤板为例,碳纤维与复材制造一体化有望节省卷绕及放卷工序成本。据赛奥碳纤维分析,碳纤维生产与后续应用过程中会经历卷绕与放卷的过程,放卷过程中丝束在纱锭上往复行走会造成预浸料制备过程中分丝梳上的毛丝与毛团间隙、叠丝以及丝束预浸带的丝宽变化等问题。在风电领域用量足够时可采取定制化风电拉挤板碳化生产线,原丝碳化后直接进行拉挤板生产,不仅可以节省卷丝和放卷的成本,而且丝束没有经历收卷与放卷过程的伤丝,能够使力学性能达到最好的状态。丙烯腈为大宗化工原料,油剂已实现国产化,碳纤维生产无原材料进口依赖。生产碳纤维原丝所用原材料主要是丙烯腈和油剂。2020年全球碳纤维需求10.686万吨,按照丙烯腈生产碳纤维比例2.2:1计算,仅占全球丙烯腈产能788.4万吨的2.98%。碳纤维原丝的工艺主要分为纺丝原液的聚合和原丝的纺制过程,其中油剂使用在纺丝上油过程中。油剂质量和上油工序直接影响原丝和碳纤维的质量,据索式萃取法测定聚丙烯腈原丝的含油率测量,碳纤维原丝的油剂重量占比约1.2%。二、 政策加码利好发展,国产化替代前景广阔碳纤维是军民两用材料,高端碳纤维自力更生是唯一途径。T800与M60J及以上规格碳纤维由于在国防军工领域具有重要应用,美日对我国采取严格的军事禁运,因此高性能碳纤维的国产自主化生产是唯一途径。近年来,我国推出了诸多新政策以促进碳纤维产业的发展,并且开始为碳纤维产业配套专项扶持基金。2017年4月,国家科技部下发“十三五”材料领域科技创新专项规划,规划提出要以高性能纤维及复合材料、高温合金为核心,突破结构与复合材料制备及应用的关键共性技术,提升先进结构材料的保障能力和国际竞争力。2021年3月,十三届全国人大四次会议通过了中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要,纲要中提出要在高端新材料领域加强碳纤维等材料的研发应用,各地政府密集出台相关政策支持碳纤维产业发展。2021年9月,科技部拟推动建立碳纤维及其复合材料国家技术创新中心,在政府引导下,联合碳纤维及复合材料企业、高校、科研院所,突破全产业链共性技术,突破关系国家长远发展和产业安全的关键技术瓶颈,支持碳纤维及复合材料企业实现技术、技术装备和产品创新。碳纤维国产化占比逐年提升由2015年的15%上升至2021年的47%,主要受益于产能扩张与技术水平提升带来的产能利用率增加。我国碳纤维行业前期“有产能,无产量”现象严重,产能利用率较低,虽然规划及在建产能较大,但实际产量却较少,主要由于涌入碳纤维行业的大多数企业在一些关键技术上无突破,生产线运行及产品质量不稳定导致。但随着碳纤维企业整体技术水平的不断提升,产能利用率呈现出不断增长的趋势。2021年国内达产率下滑或因吉林化纤、中复神鹰、新创碳谷的产能建设完成是在下半年或年底,正常生产时间不足。三、 碳纤维性能优势突出,景气度持续上行碳纤维是目前已大量生产的高性能纤维中具有最高的比强度和比模量的纤维,相对玄武岩纤维、玻璃纤维等材料性能优势较大,限制应用推广的主要因素是价格。政策持续支持碳纤维行业发展,2021年来碳纤维产业政策密集出台,多省将碳纤维产业发展纳入十四五规划。2015-2021年碳纤维全球需求年均复合增速14.3%,中国需求年均复合增速24.5%。双碳战略推动碳纤维需求增长,据北极星风力发电网预计,碳纤维降低到80元/kg下游风电叶片厂商的接受度会比较高,有望迎来大规模应用。据赛奥碳纤维,东丽旗下卓尔泰克大丝束碳纤维在13美元/Kg的售价时仍有不错的毛利率,因此基于碳纤维未来成本下降能够满足风电大规模应用的假设,预计国内风电领域2025年碳纤维需求有望达到8.34万吨,2021-2025年CAGR达39%;碳碳复材领域2025年碳纤维需求有望达到8403吨,2021-2025年CAGR达24%;航空航天领域2025年需求有望达到3462吨,2021-2025年CAGR达15%;压力容器领域2025年需求有望达到7993吨,2021-2025年CAGR达28%;基于2021-2025年体育休闲和汽车领域碳纤维需求保持5%/8%年均复合增速,混配模成型、建筑及其他领域维持10%年均复合增速,预计2025年国内碳纤维需求有望达到15.9万吨,对应市场空间232亿元。国内碳纤维行业随技术进步已跨越低达产率阶段,头部公司大规模扩产有望重塑竞争格局。碳纤维按照标准模量和中高模量形成了两个割裂市场,中高模量面临国外技术封锁与禁售,标准模量面临国外巨头激烈竞争。碳纤维行业目前产能集中度较高,2021年CR5为57%,国际巨头进行产能扩张,韩国晓星和东丽旗下卓尔泰克分别计划于2022年与2023年扩产至0.65/2万吨。国内企业达产率从2015年的10.5%上升至2020年的51.2%,已趋近国际水平,2020年国内多家龙头企业达产率超90%,产能扩张技术条件成熟,2021年国内多家碳纤维龙头企业开启产能扩张,截至2021年底国内碳纤维企业产能合计全球占比已达30.6%。规模化、技术改进、设备国产化、产业链一体化有望驱动国内碳纤维企业成本优化,竞争要素方面航空航天等高附加值领域或为性能、标准模量领域或为成本。碳纤维行业规模效应显著,产能扩张可有效降低单位生产成本,设备国产化及工艺改进有望带来成本端的持续优化,以风电拉挤板为例,碳纤维与复材制造一体化有望节省卷绕及放卷工序成本。目前国内航空航天等高附加值领域主要碳纤维需求有望由高强型为主升级至高强中模型为主,不同耐温级别及韧性的复合材料依赖于树脂基体研发,相应碳纤维及复合材料的竞争要素或为性能;其中碳纤维性能的关注指标主要包括拉伸强度、弹性模量、差异系数、断裂伸长率、树脂亲和性等,或与公司产品一致性、碳纤维浆料与上浆工艺、表面改性处理能力相关;对比东丽与SGL,具备高性能碳纤维复材制备能力或需具备优秀的树脂体系。标准模量碳纤维领域主要竞争要素或为成本,基于腈纶工业基础的大丝束或为主要降本技术路线。据ORNLLowcosttextile-gradecarbon-fiberepoxycompositesforautomotiveandWindenergyapplications2020,由纺织级聚丙烯腈原丝制成的巨丝束(450-600k)碳纤维成本可达每公斤11美元左右,因此国产碳纤维降本可期。据SGL,其SIGRAFIL®CT50-4.8/280牌号50K大丝束碳纤维拉伸强度4800MPa,弹性模量280GPa,已满足国标高强中模型QZ4526标准,因此国产大丝束未来性能有望提升至T700以上,或会在性能要求相对不高但成本敏感的小丝束应用领域形成竞争。第三章 项目概况一、 项目名称及项目单位项目名称:潮州碳纤维项目项目单位:xxx集团有限公司二、 项目建设地点本期项目选址位于xxx(以选址意见书为准),占地面积约71.00亩。项目拟定建设区域地理位置优越,交通便利,规划电力、给排水、通讯等公用设施条件完备,非常适宜本期项目建设。三、 可行性研究范围本报告对项目建设的背景及概况、市场需求预测和建设的必要性、建设条件、工程技术方案、项目的组织管理和劳动定员、项目实施计划、环境保护与消防安全、项目招投标方案、投资估算与资金筹措、效益评价等方面进行综合研究和分析,为有关部门对工程项目决策和建设提供可靠和准确的依据。四、 编制依据和技术原则(一)编制依据1、中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要;2、中国制造2025;3、建设项目经济评价方法与参数及使用手册(第三版);4、项目公司提供的发展规划、有关资料及相关数据等。(二)技术原则1、严格遵守国家和地方的有关政策、法规,认真执行国家、行业和地方的有关规范、标准规定;2、选择成熟、可靠、略带前瞻性的工艺技术路线,提高项目的竞争力和市场适应性;3、设备的布置根据现场实际情况,合理用地;4、严格执行“三同时”原则,积极推进“安全文明清洁”生产工艺,做到环境保护、劳动安全卫生、消防设施和工程建设同步规划、同步实施、同步运行,注意可持续发展要求,具有可操作弹性;5、形成以人为本、美观的生产环境,体现企业文化和企业形象;6、满足项目业主对项目