欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高三数学说课稿模板.docx

    • 资源ID:50248785       资源大小:28.82KB        全文页数:19页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高三数学说课稿模板.docx

    高三数学说课稿模板 说课稿要说好课,就必须写好说课稿。仔细拟定说课稿, 是说课取得成功的前提,是老师提高业务素质的有效途径。下面是为大家整理的关于高三数学说课稿模板,欢迎大家阅读参考学习! 高三数学说课稿模板1 教学目的:使学生熟练掌握奇偶函数的判定以及奇偶函数性质的灵活应用; 培育学生化归、分类以及数形结合等数学思想;提高学生分析、解题的能力。 教学过程: 一、知识要点回顾 1、奇偶函数的定义:应注意两点:定义域在数轴上关于原点对称是函数为奇偶函数的必要非充分条件。f(x)f(x)或f(x)f(x)是定义域上的恒等式(对定义域中任一x均成立)。 2、判定函数奇偶性的方法(首先注意定义域是否为关于原点的对称区间) 定义法判定(有时需将函数化简,或应用定义的变式:f(x)f(x)f(x)f(x)0f(x)1(f(x)0)。f(x) 图象法。 性质法。 3、奇偶函数的性质及其应用 奇偶函数的定义域关于原点对称;奇函数图象关于原点对称,并且在两个关于原点对称的区间上有相同的单调性;偶函数图象关于y轴对称,并且在两个关于原点对称的区间上单调性相反;若奇函数f(x)的定义域包含0,则f(0)=0;f(x)为偶函数,则f(x)f(x);y=f(x+a)为偶函数 而偶函数y=f(x+a)的对称轴为f(xa)f(xa)f(x)对称轴为x=a, x=0(y轴);两个奇函数的和差是奇函数,积商是偶函数;两个偶函数的和差、积商都是偶函数;一奇一偶的两个函数的积商是奇函数。 二、典例分析 例1:试判断下列函数的奇偶性 |x|(x1)0;(1)f(x)|x2|x2|;(2 )f(x);(3)f(x)x2x1_(x0)(4)f(x);(5 )ylog2(x;(6)f(x)loga。2x1_(x0) 解:(1)偶;(2)奇;(3)非奇非偶;(4)奇;(5)奇;(6)奇。简析:(1)用定义判定; (2)先求定义域为,再化简函数得f(x)则f(x)f(x),为奇函数; (3)定义域不对称; (4)x注意分段函数奇偶性的判定; (5)、均利用f(x)f(x)0判定。 例2,(1)已知f(x)是奇函数且当x0时,f(x)x32x21则xR时x32x21(x0)f(x)0(x0) 32x2x1(x0) (2)设函数yf(x1)为偶函数,若x1时yx21,则x1时,yx24x5。 简析:本题为奇偶函数对称性的灵活应用。 (1)中当x0时,x0,则f(x)(x)32(x)21可得f(x)x32x21,x0时,f(x)x32x21 也可画出示意图,由原点左边图象上任一点(x,y)关于原点的对称点(x,y)在右边的图象上可得y(x)32(x)21yx32x21。 (2)中yf(x1)为偶函数f(x1)f(x1)f(x)的对称轴为 x=1故x=1右边的图象上任一点(x,y)关于x=1的对称点(x2,y)在 (可画图帮助分析)。yx21上,y(x2)21x24x5。 本题也可利用二次函数的性质确定出解析式。 练习:设f(x)是定义在-1,1上的偶函数,g(x)与f(x)图象关于直线x=1对称,当x2,3时g(x)2t(x2)4(x2)3(t为常数),则f(x)的表达式为_。 例3:若奇函数f(x)是定义在(-1,1)上的增函数,试解关于a的不等式f(a2)f(a24)0。 分析:抽象函数组成的不等式的求解,常利用函数的单调性脱去“f”符号,转化为关于自变量的不等式求解,但要注意定义域)。 解:依题意得f(a2)f(a24)f(4a2)(f(x)为奇函数)又f(x)是定义在(-1,1)上的单调增函数 1a211a241 2a24aa2 解集是aa2 变式1:设定义在-2,2上的偶函数f(x)在区间0,2上单调递减,若f(1m)f(m),求实数m的取值范围。|1m|m|简解:依题意得21m2 2m2121m (注意数形结合解题) 变式2:设定义在-2,2上的偶函数y=f(x+1)在区间0,2上单调递减,若f(1-m) 11m3简解:依题意得1m3 |1m1|m1|1m22 例4,已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y),(x,yR),且 (1)f(0)=1,(2)f(x)的图象关于y轴对称。f(0)0,试证: (分析:抽象函数奇偶性的证明,常用到赋值法及奇偶性的定义)。解:(1)令x=y=0,有f(0)f(0)2f2(0),又f(0)0f(0)1。 (2)令x=0,得f(y)f(y)2f(0)f(y)2f(y) f(y)f(y)(yR) f(x)为偶函数,f(x)的图象关于y轴对称。 归类总结出抽象函数的解题方法与技巧。 变式训练:设f(x)是定义在(0,)上的减函数,且对于任意x,y(0,)x都有f()f(x)f(y)y 1(1)求f(1);(2)若f(4)=1,解不等式f(x6)f()2x (点明题型特征及解题方法) 三、小结 1、奇偶性的判定方法; 2、奇偶性的灵活应用(特别是对称性); 3、求解抽象不等式及抽象函数的常用方法。 四、课后练习及作业 1、完成教学与测试相应习题。 2、完成导与练相应习题。 高三数学说课稿模板2 一、教材分析(说教材): 1.教材所处的地位和作用: 本节内容在全书和章节中的作用是:在此之前学生已学习了基础,这为过渡到本节的学习起着铺垫作用。本节内容是在中,占据的地位。以及为其他学科和今后的学习打下基础。 2.教育教学目标: 根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标: (1)知识目标: (2)能力目标:通过教学初步培育学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培育学生运用知识的能力,培育学生加强理论联系实际的能力,(3)情感目标:通过的教学引导学生从现实的生活经历与体验出发,激发学生学习爱好。 3.重点,难点以及确定依据: 下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈: 二、教学策略(说教法) 1.教学手段: 如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采纳的教学方法。 2.教学方法及其理论依据:坚持“以学生为主体,以老师为主导”的原则,根据学生的心理进展规律,采纳学生参加程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采纳问答法时,特别注重不同难度的问题,提问不同层次的学生,面对全体,使基础差的学生也能有表现机会,培育其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到进展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中乐观培育学生学习爱好和动机,明确的学习目的,老师应在课堂上充分调动学生的学习乐观性,激发来自学生主体的最有力的动力。 3.学情分析:(说学法) (1)学生特点分析:中学生心理学讨论指出,高中阶段是(查同中学生心进展情况)抓住学生特点,乐观采纳形象生动,形式多样的教学方法和学生广泛的乐观主动参加的学习方式,定能激发学生爱好,有效地培育学生能力,促进学生个性进展。生理上表少年好动,注意力易分散 (2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深化浅出的分析。 (3)动机和爱好上:明确的学习目的,老师应在课堂上充分调动学生的学习乐观性,激发来自学生主体的最有力的动力 最后我来具体谈谈这一堂课的教学过程: 4.教学程序及设想: (1)由引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与阅历,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。 (2)由实例得出本课新的知识点 (3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。 (4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。 (5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培育学生良好的个性品质目标。 (6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。 (7)板书 (8)布置作业。 针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高, 高三数学说课稿模板3 各位评委老师,大家好! 我是本科数学_号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时函数单调性与(小)值(可以在这时候板书课题,以缓解紧张)。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。 一、教材分析 1、教材的地位和作用 (1)本节课主要对函数单调性的学习; (2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写) (3)它是历年高考的热点、难点问题 (根据具体的课题改变就行了,如果不是热点难点问题就删掉) 2、教材重、难点 重点:函数单调性的定义 难点:函数单调性的证明 重难点突破:在学生已有知识的基础上,通过仔细观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有) 二、教学目标 知识目标: (1)函数单调性的定义 (2)函数单调性的证明 能力目标:培育学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想 情感目标:培育学生勇于探索的精神和善于合作的意识 (这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化) 三、教法学法分析 1、教法分析 教必有法而教无定法,只有方法得当才会有效。新课程标准之处老师是教学的组织者、引导者、合,在教学过程要充分调动学生的乐观性、主动性。本着这一原则,在教学过程中我主要采纳以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法 2、学法分析 授人以鱼,不如授人以渔,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参加状态和参加度是影响教学效果最重要的因素。在学法选择上,我主要采纳:自主探究法、观察发现法、合作沟通法、归纳总结法。 (前三部分用时控制在三分钟以内,可适当删减) 四、教学过程 1、以旧引新,导入新知 通过课前小讨论让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,老师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x2的图像是一个曲线,在(-,0)上是下降的,而在(0,+)上是上升的。(适当添加手势,这样看起来更自然) 2、创设问题,探索新知 紧接着提出问题,你能用二次函数f(x)=x2表达式来描述函数在(-,0)的图像?老师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。 让学生仿照刚才的表述法来描述二次函数f(x)=x2在(0,+)的图像,并找个别同学起来作答,规范学生的数学用语。 让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。 3、例题讲解,学以致用 例1主要是对函数单调区间的巩固运用,通过观察函数定义在(5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式 例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。 例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采纳老师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。 学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。 4、归纳小结 本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培育学生勇于探索的精神和善于合作的意识。 5、作业布置 为了让学生学习不同的数学,我将采纳分层布置作业的方式:一组习题1.3A组1、2、3,二组习题1.3A组2、3、B组1、2 6、板书设计 我力求简洁明了地概括本节课的学习要点,让学生一目了然。 (这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动) 五、教学评价 本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作沟通,充分调动学生的乐观性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。 高三数学说课稿模板4 一、说教材 1.从在教材中的地位与作用来看 等比数列的前n项和是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养. 2.从学生认知角度看 从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是乐观因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错. 3.学情分析 教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、灵敏,却缺乏冷静、深刻,因此片面、不严谨. 4.重点、难点 教学重点:公式的推导、公式的特点和公式的运用. 教学难点:公式的推导方法和公式的灵活运用. 公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点. 二、说目标 知识与技能目标: 理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题. 过程与方法目标: 通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培育学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力. 情感与态度价值观: 通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点. 三、说过程 学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与进展过程,结合本节课的特点,我设计了如下的教学过程: 1.创设情境,提出问题 在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢? 设计意图:设计这个情境目的是在引入课题的同时激发学生的爱好,调动学习的乐观性.故事内容紧扣本节课的主题与重点. 此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定. 设计意图:在实际教学中,由于受课堂时间限制,老师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,老师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔. 2.师生互动,探究问题 在肯定他们的思路后,我接着问:1,2,22,263是什么数列?有何特征?应归结为什么数学问题呢? 探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍) 探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式.比较(1)(2)两式,你有什么发现? 设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在老师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培育学生的辩证思维能力的良好契机. 经过比较、讨论,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:.老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢? 设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的爱好和学好数学的信心. 3.类比联想,解决问题 这时我再顺势引导学生将结论一般化, 这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导. 设计意图:在老师的指导下,让学生从特殊到一般,从已知到未知,步步深化,让学生自己探究公式,从而体验到学习的愉快和成就感. 对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.) 再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式) 设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地仿照和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用. 4.讨论沟通,延伸拓展 高三数学说课稿模板5 一、教材分析: 1、知识内容:二项式定理及简单应用 2、地位及重要性 二项式定理是安排在高中数学排列组合内容后的一部分内容,其形成过程是组合知识的应用,同时也是自成体系的知识块,为随后学习的概率知识及高三选修概率与统计,作知识上的铺垫。二项展开式与多项式乘法有密切的联系,本节知识的学习,必定从更广的视角和更高的层次来审视初中学习的关于多项式变形的知识。运用二项式定理可以解决一些比较典型的数学问题,例如近似计算、整除问题、不等式的证明等。 3、教学目标 A、知识目标: (1)使学生参加并探讨二项式定理的形成过程,掌握二项式系数、字母的幂次、展开式项数的规律 (2)能够应用二项式定理对所给出的二项式进行正确的展开 B、能力目标: (1)在学生对二项式定理形成过程的参加、探讨过程中,培育学生观察、猜想、归纳的能力及分类讨论解决问题的能力 (2)培育学生的化归意识和知识迁移的能力 C、情感目标: (1)通过学生自主参加和二项式定理的形成过程培育学生解决数学问题的信心; (2)通过学生自主参加和二项式定理的形成过程培育学生体会到数学内在和谐对称美; (3)培育学生的民族自豪感,在学习知识的过程中进行爱国主义教育。 4、重点难点: 重点: (1)使学生参加并深刻体会二项式定理的形成过程,掌握二项式系数、字母的幂次、展开式项数的规律; (2)能够利用二项式定理对给出的二项式进行正确的展开。 难点:二项式定理的发现。 二、教法学法分析 为了达到这节课的目标:掌握并能运用二项式定理,让学生主动探索展开式的由来是关键。“学习任何东西的途径是自己去发现”正所谓“学问之道,问而得,不如求而得之深固也”本节课的教法贯穿启发式教学原则,以启发学生主动学习,乐观探索为主。创设一个以学生为主体,师生互动、共同探索的教与学的情境。通过复习引入,引申设疑,实验猜想,归纳推广等环节进行对此定理的探索。不仅重视知识的结果,而且重视知识的发生、发现和解决的过程,贯切新课程理念。 另外,根据“近进展区的理论”精心设置问题,调控问题的解决过程培育这节课的知识生长点。 三、教学过程 1、情景设置 问题1:若今天是星期二,再过30天后的那一天是星期几?怎么算? 预期回答:星期四,将问题转化为求“30被7除后算余数”是多少? 问题2:若今天是星期二,再过810天后的那一天是星期几? 问题3:若今天是星期二,再过天后是星期几?怎么算? 预期回答:将问题转化为求“被7除后算余数”是多少? 在初中,我们已经学过了 (a+b)2=a2+2ab+b2 (a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3 (提问):对于(a+b)4,(a+b)5 如何展开?(利用多项式乘法) (再提问):(a+b)100又怎么办? (a+b)n (n?N+)呢? 我们知道,事物之间或多或少存在着规律。也就是讨论(a+b)n(n?N+)的展开式是什么?这就是本节课要学的内容。这节课,我们就来讨论(a+b)n的二项展开式的规律性。学完本课后,此题就不难求解了。 (设计意图:使学生明确学习目的,用悬念来激发他们的学习动机。奥苏贝尔认为动机是学习的先决条件,而认知驱力,即学生渴望认知、理解和掌握知识,并能正确陈述问题、顺利解决问题的倾向是学生学习的重要动力。) 2、新授 第一步:让学生展开

    注意事项

    本文(高三数学说课稿模板.docx)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开