湖北省襄阳市襄州区2015_2016学年八年级数学上学期期中试题含解析新人教版.doc
-
资源ID:50271799
资源大小:775KB
全文页数:21页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖北省襄阳市襄州区2015_2016学年八年级数学上学期期中试题含解析新人教版.doc
湖北省襄阳市襄州区2015-2016学年八年级数学上学期期中试题一、选择题(本大题共10个小题,每小题3分,共30分)下面各小题均给出了四个选项,其中只有一个选项是正确的,请把正确选项的序号选出来,填在题后括号里。1下列平面图形中,不是轴对称图形的是( )ABCD2某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )A带去B带去C带去D都带去3如图,ABEACD,B=50°,AEC=120°,则DAC的度数是( )A120°B70°C60°D50°4现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A1个B2个C3个D4个5ABCDEF,AB=2,BC=4,若DEF的周长为偶数,则DF的取值为( )A3B4C5D3或4或56已知等腰三角形的周长为10cm,那么当三边为正整数时,它的边长为( )A2,2,6B3,3,4C4,4,2D3,3,4或4,4,27如图,AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是AOB的平分线OC,作法用得的三角形全等的判定方法是( )ASASBSSSCASADHL8如图,BE=CF,AB=DE,添加下列哪些条件可以推证ABCDFE( )ABC=EFBA=DCACDFDAC=DF9已知下列语句:(1)有两个锐角相等的直角三角形全等;(2)斜边和一条直角边分别相等的两个直角三角形全等;(3)三个角对应相等的两个三角形全等;(4)两个直角三角形全等其中正确语句的个数为( )A0B1C2D310如图,由四个小正方形组成的田字格中,ABC的顶点都是小正方形的顶点在田字格上画与ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC本身)共有( )A1个B2个C3个D4个二、填空题(本大题共10个小题,每小题4分,共40分)请将每小题的答案填在题中的横线上11点M(1,2)关于x轴对称的点的坐标为_12如图,一个加油站恰好位于两条公路m,n所夹角的平分线上,若加油站到公路m的距离是80m,则它到公路n的距离是_m13图示,点B在AE上,CBE=DBE,要使ABCABD,还需添加一个条件是_(填上适当的一个条件即可)14如图,小亮从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°照这样走下去,他第一次回到出发点A点时,一共走的路程是_15如图,O是ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若BAC=70°,BOC=_16如图,ABC中,DE是AC的垂直平分线,AE=7cm,ABD的周长为13cm,则ABC的周长=_cm17等腰三角形一腰上的高与另一边的夹角为50°,则顶角的度数为_18在平面直角坐标系中,点A(2,0),B(0,4),作BOC,使BOC与ABO全等,则点C坐标为_19一个多边形的外角和是内角和的,则这个多边形的边数为_20如图,在ABC中,点D在边BC上,AD=BD=AC,BAC=72°,则DAC=_三、解答题(本大题共6个小题,共50分)解答应写出文字说明,证明过程或演算步骤,请将每题的答案写在对应的答题区域内。21已知:如图,C为BE上一点,点A,D分别在BE两侧,ABED,AB=CE,BC=ED求证:AC=CD22已知,如图所示,AB=AC,BD=CD,DEAB于点E,DFAC于点F,求证:DE=DF23如图,在平面直角坐标系中,(1)画出与ABC关于x轴对称的图形A1B1C1;(2)若图中一个小正方形边长为一个单位长度,请写出下列各点的坐标:A1_;B1_;C1_;(3)求A1B1C1的面积24如图,在等边ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F(1)求证:AD=CE;(2)求DFC的度数25如图1,ABC中,ACB=90°,CEAB于E,D在线段AB上,AD=AC,AF平分CAE交CE于F(1)求证:FDCB;(2)若D在线段BA的延长线上,AF是CAD的角平分线AM的反向延长线,其他条件不变,如图2,问(1)中结论是否仍成立?并说明理由26如图,在ABC中,AB=AC=2,B=40°,点D在线段BC上运动(点D不与B、C两点重合),连接AD,作ADE=40°,连接AD,作ADE=40°,DE交线段AC于点E(1)当BDA=115°时,BAD=_;点D从B向C运动时,BDA逐渐变_(填“大”或“小”);(2)当ABDDCE时,求CD的长;(3)在点D的运动过程中,ADE的形状也在改变,当BDA=110°时,请判断ADE的形状,并证明之2015-2016学年湖北省襄阳市襄州区八年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)下面各小题均给出了四个选项,其中只有一个选项是正确的,请把正确选项的序号选出来,填在题后括号里。1下列平面图形中,不是轴对称图形的是( )ABCD【考点】轴对称图形【分析】根据轴对称图形的定义作答如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【解答】解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合故选:A【点评】轴对称的关键是寻找对称轴,两边图象折叠后可重合2某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )A带去B带去C带去D都带去【考点】全等三角形的应用【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃应带去故选:C【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法3如图,ABEACD,B=50°,AEC=120°,则DAC的度数是( )A120°B70°C60°D50°【考点】全等三角形的性质【分析】首先根据邻补角互补可得AEB的度数,再根据全等三角形的性质可以计算出ADC=AEB,C=B,然后根据三角形内角和定理可得答案【解答】解:AEC=120°,AEB=180°120°=60°,ABEACD,ADC=AEB=60°,C=B=50°,DAC=180°50°60°=70°,故选:B【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等4现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A1个B2个C3个D4个【考点】三角形三边关系【专题】压轴题【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可【解答】解:四条木棒的所有组合:3,4,7和3,4,9和3,7,9和4,7,9;只有3,7,9和4,7,9能组成三角形故选:B【点评】考查了三角形三边关系,三角形的三边关系:任意两边之和第三边,任意两边之差第三边;注意情况的多解和取舍5ABCDEF,AB=2,BC=4,若DEF的周长为偶数,则DF的取值为( )A3B4C5D3或4或5【考点】全等三角形的性质【分析】根据全等三角形的性质得出DE=AB=2,EF=BC=4,根据三角形三边关系定理求出2DF6,即可得出答案【解答】解:ABCDEF,AB=2,BC=4,DE=AB=2,EF=BC=4,42DF4+2,2DF6,DE=2,EF=4,DEF的周长为偶数,DF=4,故选B【点评】本题考查了全等三角形的性质和三角形的三边关系定理的应用,注意:全等三角形的对应角相等,对应边相等6已知等腰三角形的周长为10cm,那么当三边为正整数时,它的边长为( )A2,2,6B3,3,4C4,4,2D3,3,4或4,4,2【考点】等腰三角形的性质;三角形三边关系【专题】分类讨论【分析】根据等腰三角形的性质以及三角形的三边关系可知2a+b=10,2ab (令腰为a,底为b),然后根据已知条件“三边为正整数”进行分类讨论【解答】解:令腰为a,底为b 则2a+b=10,2ab,0b5;当b=4时,a=3;当b=3时,a=3.5(舍去);当b=2时,a=4;当b=1时,a=4.5(舍去);综上所述,当等腰三角形的三边为正整数是,它的边长为:3,3,4或4,4,2;故选D【点评】本题考查了等腰三角形的性质、三角形的三边关系解答该题时,采用了“分类讨论”是数学思想7如图,AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是AOB的平分线OC,作法用得的三角形全等的判定方法是( )ASASBSSSCASADHL【考点】全等三角形的判定【专题】证明题【分析】由三边相等得COMCON,即由SSS判定三角全等做题时要根据已知条件结合判定方法逐个验证【解答】解:由图可知,CM=CN,又OM=ON,OC为公共边COMCON(SSS)AOC=BOC即OC即是AOB的平分线故选B【点评】本题考查了全等三角形的判定及性质判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养8如图,BE=CF,AB=DE,添加下列哪些条件可以推证ABCDFE( )ABC=EFBA=DCACDFDAC=DF【考点】全等三角形的判定【分析】要使ABCDEF,已知AB=ED,BE=CF,具备了两条边对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可【解答】解:可添加AC=DF,或ABDE或B=DEF,证明添加AC=DF后成立,BE=CF,BC=EF,又AB=DE,AC=DF,ABCDEF故选D【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健9已知下列语句:(1)有两个锐角相等的直角三角形全等;(2)斜边和一条直角边分别相等的两个直角三角形全等;(3)三个角对应相等的两个三角形全等;(4)两个直角三角形全等其中正确语句的个数为( )A0B1C2D3【考点】全等三角形的判定【分析】根据三角形全等的判定定理和直角三角形全等的判定定理进行解答即可【解答】解:(1)有两个锐角相等的直角三角形不一定全等,错误;(2)斜边和一条直角边分别相等的两个直角三角形全等,正确;(3)三个角对应相等的两个三角形不一定全等,错误;(4)两个直角三角形不一定全等,错误;故选B【点评】本题考查的是直角三角形全等的判定,熟知直角三角形的性质及HL、ASA定理是解答此题的关键10如图,由四个小正方形组成的田字格中,ABC的顶点都是小正方形的顶点在田字格上画与ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC本身)共有( )A1个B2个C3个D4个【考点】轴对称的性质【分析】先把田字格图标上字母如图,确定对称轴找出符合条件的三角形,再计算个数【解答】解:HEC关于CD对称;FDB关于BE对称;GED关于HF对称;关于AG对称的是它本身所以共3个故选C【点评】本题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键二、填空题(本大题共10个小题,每小题4分,共40分)请将每小题的答案填在题中的横线上11点M(1,2)关于x轴对称的点的坐标为(1,2)【考点】关于x轴、y轴对称的点的坐标【分析】利用关于x轴对称点的性质,关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即点P(x,y)关于x轴的对称点P的坐标是(x,y)【解答】解:点M(1,2)关于x轴对称的点的坐标为:(1,2)故答案为:(1,2)【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键12如图,一个加油站恰好位于两条公路m,n所夹角的平分线上,若加油站到公路m的距离是80m,则它到公路n的距离是80m【考点】角平分线的性质【专题】应用题【分析】根据角平分线的性质解答即可【解答】解:因为加油站恰好位于两条公路m,n所夹角的平分线上,所以加油站到公路m和公路n的距离是相等的,即为80m,故答案为:80【点评】此题考查角平分线的性质,关键是根据角平分线的点到角的两边距离相等13图示,点B在AE上,CBE=DBE,要使ABCABD,还需添加一个条件是BC=BD(填上适当的一个条件即可)【考点】全等三角形的判定【专题】开放型【分析】求出ABC=ABD,根据全等三角形的判定定理SAS推出即可【解答】解:BC=BD,理由是:CBE=DBE,CBE+ABC=180°,DBE+ABD=180°,ABC=ABD,在ABC和ABD中ABCABD,故答案为:BC=BD【点评】本题考查了全等三角形的判定和性质的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS,主要考查学生的推理能力14如图,小亮从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°照这样走下去,他第一次回到出发点A点时,一共走的路程是100米【考点】多边形内角与外角【分析】根据题意,小亮走过的路程是正多边形,先用360°除以36°求出边数,然后再乘以10m即可【解答】解:每次小亮都是沿直线前进10米后向左转36°,他走过的图形是正多边形,边数n=360°÷36°=10,他第一次回到出发点A时,一共走了10×10=100米故答案为:100米【点评】本题考查了正多边形的边数的求法,根据题意判断出小亮走过的图形是正多边形是解题的关键15如图,O是ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若BAC=70°,BOC=125°【考点】角平分线的性质【分析】根据在角的内部到角的两边距离相等的点在角的平分线上判断出OB、OC分别平分ABC和ACB,再根据三角形的内角和定理求出ABC+ACB,然后求出OBC+OCB,再次利用三角形的内角和定理列式计算即可得解【解答】解:OF=OD=OE,OB、OC分别平分ABC和ACB,BAC=70°,ABC+ACB=180°70°=110°,OBC+OCB=(ABC+ACB)=×110°=55°,BOC=180°(OBC+OCB)=180°55°=125°故答案为:125°【点评】本题考查了在角的内部到角的两边距离相等的点在角的平分线上的性质,三角形的内角和定理,角平分线的定义,熟记性质并准确识图是解题的关键16如图,ABC中,DE是AC的垂直平分线,AE=7cm,ABD的周长为13cm,则ABC的周长=27cm【考点】线段垂直平分线的性质【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案【解答】解:DE是AC的垂直平分线,AD=CD,AC=2AE=14cm,又ABD的周长=AB+BD+AD=13cm,AB+BD+CD=13cm,即AB+BC=13cm,ABC的周长=AB+BC+AC=13+14=27cm故答案为27【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键17等腰三角形一腰上的高与另一边的夹角为50°,则顶角的度数为100°或40°或140°【考点】等腰三角形的性质【分析】由于本题已知中没有明确指出等腰三角形是锐角三角形还是钝角三角形,因此要分情况讨论【解答】解:ABC是等腰三角形,且BAC为顶角,CD是腰AB的高(1)当等腰三角形是锐角三角形时,如图;ACD=50°,BAC=90°ACD=40°;(2)当等腰三角形是钝角三角形时;一、如图1;当BCD=50°时,B=40°;BAC=180°2B=100°;二、如图2;当ACD=50°时,CAD=40°;BAC=180°CAD=140°;故这个等腰三角形顶角的度数为:100°或140°或40°故答案为:100°或140°或40°【点评】本题考查了等腰三角形及三角形内角和定理等知识;分类讨论的思想的应用是正确解答本题的关键,分类时要注意不重不漏18在平面直角坐标系中,点A(2,0),B(0,4),作BOC,使BOC与ABO全等,则点C坐标为(2,0)或(2,4)或(2,4)【考点】坐标与图形性质;全等三角形的性质【分析】分点C在x轴负半轴上和点C在第一象限,第二象限三种情况,利用全等三角形对应边相等解答【解答】解:如图,点C在x轴负半轴上时,BOC与ABO全等,OC=OA=2,点C(2,0),点C在第一象限时,BOC与ABO全等,BC=OA=2,OB=BO=4,点C(2,4),点C在第二象限时,BOC与ABO全等,BC=OA=2,OB=BO=4,点C(2,4);综上所述,点C的坐标为(2,0)或(2,4)或(2,4)故答案为:(2,0)或(2,4)或(2,4)【点评】本题考查了坐标与图形性质,全等三角形的判定与性质,难点在于根据点C的位置分情况讨论19一个多边形的外角和是内角和的,则这个多边形的边数为9【考点】多边形内角与外角【分析】任何多边形的外角和一定是360度,外角和是内角和的,则这个多边形的内角和是1260度n边形的内角和是(n2)180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数【解答】解:根据题意,得(n2)180=1260,解得n=9则这个多边形的边数为9【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决20如图,在ABC中,点D在边BC上,AD=BD=AC,BAC=72°,则DAC=36°【考点】等腰三角形的性质【分析】根据等腰三角形的性质得到1=B,3=C,由外角的性质得到3=1+B=2B,于是得到C=3=2B,根据三角形的内角和得到C=72°,即可得到结论【解答】解:AD=BD=AC,1=B,3=C,3=1+B=2B,C=3=2B,BAC=72°,B+C=180°72°=108°,C=72°,DAC=180°2C=36°故答案为:36°【点评】本题考查了等腰三角形的性质,三角形的内角和,三角形外角的性质,熟练则各性质定理是解题的关键三、解答题(本大题共6个小题,共50分)解答应写出文字说明,证明过程或演算步骤,请将每题的答案写在对应的答题区域内。21已知:如图,C为BE上一点,点A,D分别在BE两侧,ABED,AB=CE,BC=ED求证:AC=CD【考点】全等三角形的判定与性质【专题】证明题【分析】根据ABED推出B=E,再利用SAS判定ABCCED从而得出AC=CD【解答】证明:ABED,B=E在ABC和CED中,ABCCEDAC=CD【点评】本题是一道很简单的全等证明,纵观近几年北京市中考数学试卷,每一年都有一道比较简单的几何证明题:只需证一次全等,无需添加辅助线,且全等的条件都很明显22已知,如图所示,AB=AC,BD=CD,DEAB于点E,DFAC于点F,求证:DE=DF【考点】全等三角形的判定与性质;角平分线的性质【专题】证明题【分析】连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到EAD=FAD,即AD为角平分线,再由DEAB,DFAC,利用角平分线定理即可得证【解答】证明:连接AD,在ACD和ABD中,ACDABD(SSS),EAD=FAD,即AD平分EAF,DEAE,DFAF,DE=DF【点评】此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键23如图,在平面直角坐标系中,(1)画出与ABC关于x轴对称的图形A1B1C1;(2)若图中一个小正方形边长为一个单位长度,请写出下列各点的坐标:A1(2,2);B1(1,0);C1(1,2);(3)求A1B1C1的面积【考点】作图-轴对称变换【分析】(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接;(2)根据直角坐标系的特点写出各点的坐标;(3)用三角形A1B1C1所在的矩形的面积减去周围三个小三角形和一个小正方形的面积即可求解【解答】解:(1)所作图形如图所示:(2)A1(2,2);B1(1,0);C1 (1,2);(3)A1B1C1的面积=3×4×1×2×1×3×3×41×1=故答案为:(2,2);(1,0);(1,2)【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出点对应点的坐标,然后顺次连接24如图,在等边ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F(1)求证:AD=CE;(2)求DFC的度数【考点】全等三角形的判定与性质;等边三角形的性质【专题】作图题【分析】根据等边三角形的性质,利用SAS证得AECBDA,所以AD=CE,ACE=BAD,再根据三角形的外角与内角的关系得到DFC=FAC+ACF=FAC+BAD=BAC=60°【解答】(1)证明:ABC是等边三角形,BAC=B=60°,AB=AC又AE=BD,AECBDA(SAS)AD=CE;(2)解:(1)AECBDA,ACE=BAD,DFC=FAC+ACF=FAC+BAD=BAC=60°【点评】本题利用了等边三角形的性质和三角形的一个外角等于与它不相邻的两个内角的和求解25如图1,ABC中,ACB=90°,CEAB于E,D在线段AB上,AD=AC,AF平分CAE交CE于F(1)求证:FDCB;(2)若D在线段BA的延长线上,AF是CAD的角平分线AM的反向延长线,其他条件不变,如图2,问(1)中结论是否仍成立?并说明理由【考点】全等三角形的判定与性质;平行线的判定与性质【分析】(1)易证DAF=CAF,即可证明DAFCAF,可得ACE=ADF,易证B=ACE,即可求得ADF=B,即可解题;(2)作AGDF,易证AE=AG,即可证明RTADGRTAEC,可得D=ACE,易证ACE=B,即可求得D=B,即可解题【解答】证明:(1)AF平分CAE,DAF=CAF,在DAF和CAF中,DAFCAF(SAS),ACE=ADF,ACE+CAB=90°,B+CAB=90°,B=ACE,ADF=B,DFBC;(2)作AGDF,如图2,AF平分CAE,CEAE,AE=AG,在RTADG和RTAEC中,RTADGRTAEC(HL),D=ACE,ACE+BCE=90°,BCE+B=90°,ACE=B,D=B,DFBC【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证DAFCAF和RTADGRTAEC是解题的关键26如图,在ABC中,AB=AC=2,B=40°,点D在线段BC上运动(点D不与B、C两点重合),连接AD,作ADE=40°,连接AD,作ADE=40°,DE交线段AC于点E(1)当BDA=115°时,BAD=25;点D从B向C运动时,BDA逐渐变小(填“大”或“小”);(2)当ABDDCE时,求CD的长;(3)在点D的运动过程中,ADE的形状也在改变,当BDA=110°时,请判断ADE的形状,并证明之【考点】全等三角形的判定与性质;等腰三角形的性质【专题】动点型【分析】(1)利用邻补角的性质和三角形内角和定理解题;(2)直接利用全等三角形的对应边相等求解即可;(3)当BDA的度数为110°或80°时,ADE的形状是等腰三角形【解答】解:(1)EDC=180°ADBADE=180°115°40°=25°; 点D从B向C运动时,BDA逐渐变小;(2)ABDDCEAB=DC=2;(3)当BDA的度数为110°时,ADE的形状是等腰三角形,证明:BDA=110°时,ADC=70°,C=40°,DAC=70°,ADC=DAC=70°,ADE的形状是等腰三角形【点评】此题主要考查学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强,但难度不大,属于基础题21