关于学校数学学问点总结5篇.docx
关于学校数学学问点总结5篇 学校是我们不行或缺的一部分,但是许多人没有记笔记的习惯。今日我就为大家整理了学校数学学问点总结的.,供大家参考学习,让我们一起来看看吧。 学校数学学问点总结:篇一 包含有理数分类的原则和方法,相反数、数轴、肯定值的概念和特点。 1.有理数的分类:有理数包括整数和分数,整数又包括正整数,0和负整数,分数包括正分数和负分数。“分类”的原则:(1)相称(不重、不漏);(2)有标准 2.非负数:正数与零的统称。 3.相反数: (1)定义:假如两个数的和为0.那么这两个数互为相反数. (2)求相反数的公式: a的相反数为-a. (3)性质:a0时,a-a;a与-a在数轴上的位置关于原点对称;两个相反数的和为0,商为-1。 4.数轴: (1)定义(“三要素”):具有原点、正方向、单位长度的直线叫数轴。 作用:直观地比较实数的大小;明确体现肯定值意义;全部的有理数可以在数轴上表示出来,全部的无理数如都可以在数轴上表示出来,故数轴上的点有的表示有理数,有的表示无理数,数轴上的点与实数是一一对应关系。 5.肯定值:(1)代数定义:正数的肯定值是它的本身,0的肯定值是它的本身,负数的肯定值是它的相反数。 (2)几何定义:数a的肯定值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 符号”是“非负数”的标志; 数a的肯定值只有一个; 处理任何类型的题目,只要其中有”出现,其关键一步是去掉”符号。 学校数学学问点总结:篇二 1.乘方的意义 求n个相同因数的积的运算,叫乘方,其中,n为自然数,乘方的结果叫幂. 一般地,a·a·.·a(n个a)记作an,其中a叫底数,n叫指数,读作a的n次方或a的n次罪。指数为1时,可省略不写,底数是分数或负数的应添括号. 应用乘方的定义时,要留意分清底数、指数,如(-3)2与-32中,前者底数是-3,后者底数为3;前者指数对负数起作用,后者指数“管不住”负号,这两个幂不相等,是互为相反数. 留意(1)任何数的偶次幂都是非负数. (2)-1的偶次幂得1,-1的奇次幂为-1. (3)1的任何欢幂都得1,0的任何次幂都为0. 2.科学记数法 一般地,一个大于10的数可以表示成a×10n的形式,其中1a10,n是正整数,这种记数方法叫科学记数法. 用科学记数法表示一个大于10的数时,10的指数(即n的值)比原数的整数位数少1.如原数有6位整数,n=5. 被表示的数若是负数时,用科学记数法表示一个数,不能转变被表示数的大小,并按记数的要求书写,不要遗漏了负号. 3.有效数字 经四舍五人的近似数,从左边第一个不是0的数字起,到精确的数位止,全部的数字,都叫这个近似数的有效数字. 4.精确度 精确度是近似数的精确程度,一般表现为两种形式: (1)精确到某一位 一个近似数四舍五入到哪一位,就称这个数精确到哪一位,如近似数0.576精确到千分位,或称精确到0.001. (2)保留若干个有效数字 一个近似数有几个有效数字,就称这个近似数保留几个有效数字,如近似数0.324是保留三位有效数字. 留意:给定一个近似数,要确定其精确度,主要是由该近似数的最终一位有效数字在该数中所处的位置所打算的. 5.有理数的混合运算 规章是:先算乘方,再算乘除,最终算加减;同级运算,根据从左到右的挨次进行,有括号的先算括号内,计算过程中,敏捷运用运算律. 学校数学学问点总结:篇三 加法法则 1.同号两数相加,取相同的符号,并把肯定值相加; 2.肯定值不相等的异号两数相加,取肯定值较大的加数符号,并用较大的肯定值减去较小的肯定值,互为相反数的两个数相加得0; 3.一个数同0相加,仍得这个数. 减法法则 减去一个数,等于加上这个数的相反数. 运用此法则时留意“两变”:一是减法变为加法;二是减数变为其相反数 总结 .有理数的加减法可统一成加法. .由于有理数加减法可统一成加法,所以在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要留意交换加数的位置时,要连同前面的符号一起交换. 乘法的法则: 两数相乘,同号得正,异号得负,并把肯定值相乘; 任何数同0相乘,都得0. 几个不等于0的数相乘,积的符号由负因数的个数打算.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正. 除法的法则: 0没有倒数,乘积为1的两个数互为倒数. 两数相除,同号得正,异号得负,并把肯定值相除. 0除以任何一个不为0的数,都得0.(分母0).利用除法法则可以化简分数. 在有理数混合运算中: 1.先乘方,再乘除,最终加减; 2.同级运算从左到右按挨次运算; 3.若有括号,先小再中最终大,依次计算. 常见考法 肯定值、相反数、数轴的概念难度不大,但极易混淆。在段考和中考中都是重点,题型多以填空、选择为主。有时也和定义新运算这类题目联系起来考查。 学校数学学问点总结:篇四 因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。 因式分解要素: 结果必需是整式 结果必需是积的形式 结果是等式 因式分解与整式乘法的关系:m(a+b+c) 公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。 公因式确定方法: 系数是整数时取各项最大公约数。 相同字母取最低次幂 系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。 提取公因式步骤: 确定公因式。 确定商式。 公因式与商式写成积的形式。 分解因式留意事项: 不准丢字母 不准丢常数项留意查项数 双重括号化成单括号 结果按数单字母单项式多项式挨次排列 相同因式写成幂的形式 首项负号放括号外 括号内同类项合并。 学校数学学问点总结:篇五 1、数轴:画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。任何一个有理数都可以用数轴上的一个点来表示。假如两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。 2、肯定值:在数轴上,一个数所对应的点与原点的距离叫做该数的肯定值。正数的肯定值是他的本身、负数的肯定值是他的相反数、0的肯定值是0。两个负数比较大小,肯定值大的反而小。 3、有理数的运算: 加法:同号相加,取相同的符号,把肯定值相加。异号相加,肯定值相等时和为0;肯定值不等时,取肯定值较大的数的符号,并用较大的肯定值减去较小的肯定值。一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。 乘法:两数相乘,同号得正,异号得负,肯定值相乘。任何数与0相乘得0。乘积为1的两个有理数互为倒数。 除法:除以一个数等于乘以一个数的倒数。0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。 混合挨次:先算乘法,再算乘除,最终算加减,有括号要先算括号里的。 平方根:假如一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。假如一个数X的平方等于A,那么这个数X就叫做A的平方根。一个正数有2个平方根/0的平方根为0/负数没有平方根。求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根:假如一个数X的立方等于A,那么这个数X就叫做A的立方根。正数的立方根是正数、0的立方根是0、负数的立方根是负数。求一个数A的立方根的运算叫开立方,其中A叫做被开方数。 4、实数: 实数分有理数和无理数。 在实数范围内,相反数,倒数,肯定值的意义和有理数范围内的相反数,倒数,肯定值的意义完全一样。 每一个实数都可以在数轴上的一个点来表示。