2015年普通高等学校招生全国统一考试(天津卷)文科【解析版】.doc
绝密启封并使用完毕前 试题类型:A注意事项:1.本试卷分第卷(选择题)和第卷(非选择题)两部分。第卷1至3页,第卷3至5页。2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。3.全部答案在答题卡上完成,答在本试题上无效。 4. 考试结束后,将本试题和答题卡一并交回。一、选择题(每小题5分,共40分)1.已知全集,集合,集合,则集合( )(A) (B) (C) (D)【答案】B来源:学。科。网Z。X。X。K【考点定位】本题主要考查集合的交集与补集运算.【名师点睛】集合是高考中的高频考点,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.2.设变量满足约束条件,则目标函数的最大值为( )(A) 7 (B) 8 (C) 9 (D)14【答案】C【解析】试题分析:,当 时取得最大值9,故选C.此题也可画出可行域,借助图像求解,【考点定位】本题主要考查线性规划知识.【名师点睛】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合,准确作出图形是解决问题的关键.来源:学§科§网3.阅读下边的程序框图,运行相应的程序,则输出i的值为( )(A) 2 (B) 3 (C) 4 (D)5【答案】C【考点定位】本题主要考查程序框图及学生分析问题解决问题的能力.【名师点睛】天津卷程序框图常以客观题形式出现,属于基础题,解决此类问题的关键是确定循环次数,当循环次数不多时,可以逐次列出计算结果,天津卷2014年第3题和本题是同一类问题,希望考生留意这种命题方式.4.设,则“”是“”的( )(A) 充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件【答案】A【解析】试题分析:由,可知“”是“”的充分而不必要条件,故选A.【考点定位】本题主要考查不等式解法及充分条件与必要条件.【名师点睛】本题考查的知识点有两个,一是绝对值不等式的解法,与本题有关的结论是:若,则,另一个是充分条件与必要条件,与本题有关的结论是:对于非空集合,若是的真子集,则是的充分不必要条件.5. 已知双曲线的一个焦点为,且双曲线的渐近线与圆相切,则双曲线的方程为( )(A) (B) (C) (D) 【答案】D【考点定位】圆与双曲线的性质及运算能力.【名师点睛】本题是圆与双曲线的交汇题,虽有一定的综合性,但方法容易想到,仍属于基础题.不过要注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.6. 如图,在圆O中,M,N是弦AB的三等分点,弦CD,CE分别经过点M,N,若CM=2,MD=4,CN=3,则线段NE的长为( )(A) (B) 3 (C) (D) 【答案】A【解析】试题分析:根据相交弦定理可得 所以所以选A. 【考点定位】本题主要考查圆中的相交弦定理.【名师点睛】平面几何中与圆有关的性质与定理是高考考查的热点,解题时要充分利用性质与定理求解,本部分内容中常见的命题点有:平行线分线段成比例定理;三角形的相似与性质;圆内接四边形的性质与判定;相交弦定理与切割线定理.7. 已知定义在R上的函数为偶函数,记,则,的大小关系为( )(A) (B) (C) (D) 【答案】B【解析】试题分析:由 为偶函数得,所以, ,所以,故选B.【考点定位】本题主要考查函数奇偶性及对数运算.【名师点睛】函数是高考中的重点与热点,客观题中也会出现较难的题,解决此类问题要充分利用相关结论.函数的图像关于直线 对称,本题中求m的值,用到了这一结论,本题中用到的另一个结论是对数恒等式:.8. 已知函数,函数,则函数的零点的个数为( )(A) 2 (B) 3 (C)4 (D)5【答案】A【考点定位】本题主要考查分段函数、函数零点及学生分析问题解决问题的能力.【名师点睛】本题解法采用了直接解方程求零点的方法,这种方法对运算能力要求较高.含有绝对值的分段函数问题,一直是天津高考数学试卷中的热点,这类问题大多要用到数形结合思想与分类讨论思想,注意在分类时要做到:互斥、无漏、最简.二、填空题:本大题共6小题,每小题5分,共30分.9. i是虚数单位,计算 的结果为 【答案】-i【解析】试题分析:.【考点定位】本题主要考查复数的乘除运算.【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是中的负号易忽略,所以做复数题要注意运算的准确性.10. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为 .【答案】 来源:Zxxk.Com【考点定位】本题主要考查三视图及几何体体积的计算.【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.11. 已知函数 ,其中a为实数,为的导函数,若 ,则a的值为 【答案】3【解析】试题分析:因为 ,所以.【考点定位】本题主要考查导数的运算法则.【名师点睛】本题考查内容单一,求出由,再由可直接求得a的值,因此可以说本题是一道基础题,但要注意运算的准确性,由于填空题没有中间分,一步出错,就得零分,故运算要特别细心.12. 已知 则当a的值为 时取得最大值.【答案】4【解析】试题分析:当时取等号,结合可得 【考点定位】本题主要考查对数运算法则及基本不等式应用.【名师点睛】在利用基本不等式求最值时,一定要紧扣“一正、二定、三相等”这三个条件,注意创造“定”这个条件时常要对所给式子进行拆分、组合、添加系数等处理,使之可用基本不等式来解决,若多次使用基本不等式,必须保持每次取等的一致性.13. 在等腰梯形ABCD中,已知, 点E和点F分别在线段BC和CD上,且 则的值为 【答案】 【考点定位】本题主要考查平面向量的数量积.【名师点睛】高考对平面向量数量积的考查主要是向量的模,夹角的运算及平行与垂直的判断与应用,在利用数量积的定义进行计算时,要善于将相关向量分解为图形中模与夹角已知的向量进行运算,运算时一定要注意向量的方向,搞清两向量的夹角.14. 已知函数,若函数在区间内单调递增,且函数的图像关于直线对称,则的值为 【答案】 【解析】试题分析:由在区间内单调递增,且的图像关于直线对称,可得 ,且,所以 考点:本题主要考查三角函数的性质.【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:的单调区间长度是半个周期;若的图像关于直线 对称,则 或.三、解答题:本大题共6小题,共80分.15. (本小题满分13分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.(I)求应从这三个协会中分别抽取的运动员人数;(II)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛.(i)用所给编号列出所有可能的结果;(ii)设A为事件“编号为的两名运动员至少有一人被抽到”,求事件A发生的概率.【答案】(I)3,1,2;(II)(i)见试题解析;(ii)【考点定位】本题主要考查分层抽样与古典概型及运用概率统计知识解决实际问题的能力.【名师点睛】注意分层抽样是按比例抽取;求古典概型的概率关键是求m与n的值,常借助表格、树状图、以及列举法进行计算,注意基本事件的列举要按照一定的顺序进行列举,否则,容易出现遗漏或重复的现象,这点要引起考生重视.16. (本小题满分13分)ABC中,内角A,B,C所对的边分别为a,b,c,已知ABC的面积为, (I)求a和sinC的值;(II)求 的值.【答案】(I)a=8,;(II).【解析】试题分析:(I)由面积公式可得结合可求得解得再由余弦定理求得a=8.最后由正弦定理求sinC的值;(II)直接展开求值.试题解析:(I)ABC中,由得 由,得 又由解得 由 ,可得a=8.由 ,得.(II),【考点定位】本题主要考查三角变换及正弦定理、余弦定理等基础知识,考查基本运算求解能力.【名师点睛】解三角形问题实质是附加条件的三角变换,因此在解三角形问题的处理中,正弦定理、余弦定理就起到了适时、适度转化边角的作用,分析近几年的高考试卷,有关的三角题,大部分以三角形为载体考查三角变换.17. (本小题满分13分)如图,已知平面ABC, AB=AC=3, 点E,F分别是BC, 的中点.来源:学|科|网Z|X|X|K(I)求证:EF 平面 ;(II)求证:平面平面.(III)求直线 与平面所成角的大小.【答案】(I)见试题解析;(II)见试题解析;(III).【考点定位】本题主要考查空间中线面位置关系的证明,直线与平面所成的角等基础知识,考查空间想象能力及推理论证能力.【名师点睛】空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.18. (本小题满分13分)已知是各项均为正数的等比数列,是等差数列,且,.(I)求和的通项公式;(II)设,求数列的前n项和.【答案】(I),;(II)【考点定位】本题主要考查等差、等比数列的通项公式及错位相减法求和,考查基本运算能力.【名师点睛】近几年高考试题中求数列通项的题目频频出现,尤其对等差、等比数列的通项考查较多,解决此类 问题要重视方程思想的应用.错位相减法求和也是高考考查频率较高的一类方法,从历年考试情况来看,这类问题,运算失误较多,应引起考生重视.19. (本小题满分14分) 已知椭圆的上顶点为B,左焦点为,离心率为, (I)求直线BF的斜率;(II)设直线BF与椭圆交于点P(P异于点B),过点B且垂直于BP的直线与椭圆交于点Q(Q异于点B)直线PQ与y轴交于点M,. (i)求的值;(ii)若,求椭圆的方程.【答案】(I)2;(II)(i) ;(ii)【解析】试题分析:(I)先由 及得,直线BF的斜率;(II)先把直线BF,BQ的方程与椭圆方程联立,求出点P,Q横坐标,可得(ii)先由得=,由此求出c=1,故椭圆方程为试题解析:(I)设 ,由已知 及 可得 ,又因为 , ,故直线BF的斜率 .(II)设点 ,(i)由(I)可得椭圆方程为 直线BF的方程为 ,两方程联立消去y得 解得 .因为,所以直线BQ方程为 ,与椭圆方程联立消去y得 ,解得 .又因为 ,及 得 (ii)由(i)得,所以,即 ,又因为,所以=.又因为, 所以,因此 所以椭圆方程为 【考点定位】本题主要考查直线与椭圆等基础知识.考查运算求解能力及用方程思想和化归思想解决问题的能力.【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成,其中考查较多的圆锥曲线是椭圆,解决这类问题要重视方程思想、函数思想及化归思想的应用.20. (本小题满分14分)已知函数(I)求的单调区间;(II)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;(III)若方程有两个正实数根且,求证:.【答案】(I) 的单调递增区间是 ,单调递减区间是;(II)见试题解析;(III)见试题解析.【考点定位】本题主要考查导数的几何意义及导数的应用.考查函数思想、化归思想及综合分析问题解决问题的能力.【名师点睛】给出可导函数求单调区间,实质是解关于导函数的不等式,若函数解析式中不含参数,一般比较容易.不过要注意求单调区间,要注意定义域优先原则,且结果必须写成区间形式,不能写成不等式形式;利用导数证明不等式是近几年高考的一个热点,解决此类问题的基本思路是构造适当的函数,利用导数研究函数的单调性和极值破解.学科网高考一轮复习微课视频手机观看地址:http:/xkw.so/wksp来源:学科网