2015年普通高等学校招生全国统一考试(重庆卷)理科【解析版】.doc
-
资源ID:5052140
资源大小:2.35MB
全文页数:21页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2015年普通高等学校招生全国统一考试(重庆卷)理科【解析版】.doc
本试卷包括选择题、填空题和解答题三部分,共6页,时量120分钟,满分150分.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知集合A=,B=,则()A、A=B B、AB= C、AB D、BA来源:学科网【答案】D【解析】由于,故A、B、C均错,D是正确的,选D.【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.【名师点晴】考查集合的关系,涉及集合的相等.集合的交集运算,子集等概念,是送分题.2在等差数列中,若=4,=2,则=()A、-1 B、0 C、1 D、6【答案】B【考点定位】本题属于数列的问题,考查等差数列的通项公式与等差数列的性质.【名师点晴】本题可以直接利用等差数列的通项公式求解,也可应用等差数列的性质求解,主要考查学生灵活应用基础知识的能力.是基础题.3重庆市2013年各月的平均气温()数据的茎叶图如下: 则这组数据的中位数是()A、19 B、20 C、21.5 D、23 来源:学_科_网【答案】B.【解析】从茎叶图知所有数据为8,9,12,15,18,20,20,23,23,28,31,32,中间两个数为20,20,故中位数为20,选B.【考点定位】本题考查茎叶图的认识,考查中位数的概念.【名师点晴】本题通过考查茎叶图的知识,考查样本数据的数字特征,考查学生的数据处理能力.4“”是“”的()A、充要条件 B、充分不必要条件C、必要不充分条件 D、既不充分也不必要条件【答案】B【解析】,因此选B.【考点定位】充分必要条件.【名师点晴】本题把充分必要条件与对数不等式结合在一起,既考查了对数函数的性质,又考查了充分必要条件的判断,从本题可知我们可能用集合的观点看充分条件、必要条件:Ax|x满足条件p,Bx|x满足条件q,(1)如果AB,那么p是q的充分不必要条件;(2)如果BA,那么p是q的必要不充分条件;(3)如果AB,那么p是q的充要条件;(4)如果,且,那么p是q的既不充分也不必要条件本题易错点在于解对数不等式时没有考虑对数的定义域.5某几何体的三视图如图所示,则该几何体的体积为A、 B、C、 D、【答案】A【考点定位】组合体的体积.【名师点晴】本题涉及到三视图的认知,要求学生能由三视图画出几何体的直观图,从而分析出它是哪些基本几何体的组合,应用相应的体积公式求出几何体的体积,关键是画出直观图,本题考查了学生的空间想象能力和运算求解能力.6若非零向量a,b满足|a|=|b|,且(a-b)(3a+2b),则a与b的夹角为()A、 B、 C、 D、【答案】A【考点定位】向量的夹角.【名师点晴】本题考查两向量的夹角,涉及到向量的模,向量的垂直,向量的数量积等知识,体现了数学问题的综合性,考查学生运算求解能力,综合运用能力.7执行如题(7)图所示的程序框图,若输入K的值为8,则判断框图可填入的条件是()A、s B、s C、s D、s【答案】C【解析】由程序框图,的值依次为0,2,4,6,8,因此(此时)还必须计算一次,因此可填,选C.【考点定位】程序框图.【名师点晴】先阅读程序,确定其语句类型,本题是嵌套的条件语句,再根据程序画出程序框图,转化成求数列求和问题,要会灵活地把符号语言、图形语言、文字语言进行相互转化8已知直线l:x+ay-1=0(aR)是圆C:的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()A、2 B、 C、6 D、【答案】C【考点定位】直线与圆的位置关系.【名师点晴】首先圆是一个对称图形,它关于圆心成中心对称,关于每一条直径所在直线都是它的对称轴,当然其对称轴一定过圆心,其次直线与圆有相交、相切、相离三种位置关系,判断方法可用几何与代数两种方法研究,圆的切线长我们用勾股定理求解,设圆外一点到圆的距离为,圆的半径为,则由点所作切线的长9若,则()来源:学,科,网A、1 B、2 C、3 D、4【答案】C【解析】由已知,选C.【考点定位】两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换.【名师点晴】三角恒等变换的主要题目类型是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算即可本例应用两角和与差的正弦(余弦)公式化解所求式子,利用同角关系式使得已知条件可代入后再化简,求解过程中注意公式的顺用和逆用10设双曲线(a>0,b>0)的右焦点为1,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A、 B、C、 D、【答案】A【考点定位】双曲线的性质.【名师点晴】求双曲线的渐近线的斜率取舍范围的基本思想是建立关于的不等式,根据已知条件和双曲线中的关系,要据题中提供的条件列出所求双曲线中关于的不等关系,解不等式可得所求范围解题中要注意椭圆与双曲线中关系的不同二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11设复数a+bi(a,bR)的模为,则(a+bi)(a-bi)=_.【答案】3【解析】由得,即,所以.【考点定位】复数的运算.【名师点晴】复数的考查核心是代数形式的四则运算,即使是概念的考查也需要相应的运算支持本题首先根据复数模的定义得,复数相乘可根据平方差公式求得,也可根据共轭复数的性质得12的展开式中的系数是_(用数字作答).【答案】【考点定位】二项式定理【名师点晴】的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指,它仅是与二项式的幂的指数n及项数有关的组合数,而与a,b的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a,b的系数有关在求二项展开式特定项的系数时要充分注意这个区别.13在ABC中,B=,AB=,A的角平分线AD=,则AC=_.【答案】【解析】由正弦定理得,即,解得,从而,所以,.【考点定位】解三角形(正弦定理,余弦定理)【名师点晴】解三角形就是根据正弦定理和余弦定理得出方程进行的当已知三角形边长的比时使用正弦定理可以转化为边的对角的正弦的比值,本例第一题就是在这种思想指导下求解的;当已知三角形三边之间的关系式,特别是边的二次关系式时要考虑根据余弦定理把边的关系转化为角的余弦关系式,再考虑问题的下一步解决方法考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14如图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3,CE:ED=2:1,则BE=_.【答案】2【考点定位】相交弦定理,切割线定理.【名师点晴】平面几何问题主要涉及三角形全等,三角形相似,四点共圆,圆中的有关比例线段(相关定理)等知识,本题中有圆的切线,圆的割线,圆的相交弦,由圆的切割线定理和相交弦定理就可以得到题中有关线段的关系15已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C的极坐标方程为,则直线l与曲线C的交点的极坐标为_.【答案】【解析】直线的普通方程为,由得,直角坐标方程为,把代入双曲线方程解得,因此交点.为,其极坐标为.【考点定位】参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化.【名师点晴】参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,本题这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题16若函数的最小值为5,则实数a=_.【答案】或【解析】由绝对值的性质知在或时可能取得最小值,若,或,经检验均不合;若,则,或,经检验合题意,因此或.【考点定位】绝对值的性质,分段函数.【名师点晴】与绝对值有关的问题,我们可以根据绝对值的定义去掉绝对值符号,把问题转化为不含绝对值的式子(函数、不等式等),本题中可利用绝对值定义把函数化为分段函数,再利用函数的单调性求得函数的最小值,令此最小值为5,求得的值三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。17(本小题满分13分,(1)小问5分,(2)小问8分) 端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。 (1)求三种粽子各取到1个的概率; (2)设X表示取到的豆沙粽个数,求X的分布列与数学期望【答案】(1);(2)分布列见解析,期望为【考点定位】古典概型,随机变量的颁布列与数学期望考查学生的数据处理能力与运算求解能力【名师点晴】在解古典概型概率题时,首先把所求样本空间中基本事件的总数,其次所求概率事件中含有多少个基本事件,然后根据公式求得概率;求解一般的随机变量的期望和方差的基本方法是:先根据随机变量的意义,确定随机变量可以取哪些值,然后根据随机变量取这些值的意义求出取这些值的概率,列出分布列,根据数学期望和方差的公式计算注意在求离散型随机变量的分布列时不要忽视概率分布列性质的应用,对实际的含义要正确理解.18(本小题满分13分,(1)小问7分,(2)小问6分) 已知函数 (1)求的最小正周期和最大值; (2)讨论在上的单调性.【答案】(1)最小正周期为,最大值为;(2)在上单调递增;在上单调递减.【解析】【考点定位】三角函数的恒等变换,周期,最值,单调性,考查运算求解能力【名师点晴】三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解,三角函数的值域、三角函数的单调性也可以使用导数的方法进行研究19(本小题满分13分,(1)小问4要,(2)小问9分)如题(19)图,三棱锥中,平面分别为线段上的点,且 (1)证明:平面 (2)求二面角的余弦值。【答案】(1)证明见解析;(2).以为坐标原点,分别以的方程为x轴,y轴,z轴的正方向建立空间直角坐标系,则(0,0,0,),【考点定位】考查线面垂直,二面角考查空间想象能力和推理能力【名师点晴】立体几何解答题的一般模式是首先证明线面位置关系(一般考虑使用综合几何方法进行证明),然后是与空间角有关的问题,综合几何方法和空间向量方法都可以,但使用综合几何方法要作出二面角的平面角,作图中要伴随着相关的证明,对空间想象能力与逻辑推理能力有较高的要求,而使用空间向量方法就是求直线的方向向量、平面的法向量,按照空间角的计算公式进行计算,也就是把几何问题完全代数化了,这种方法对运算能力有较高的要求两种方法各有利弊,在解题中可根据情况灵活选用学科网20(本小题满分12分,(1)小问7分,(2)小问5分) 设函数 (1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程; (2)若在上为减函数,求的取值范围。【答案】(1),切线方程为;(2).【考点定位】复合函数的导数,函数的极值,切线,单调性考查综合运用数学思想方法分析与解决问题的能力来源:学科网ZXXK【名师点晴】导数及其应用通常围绕四个点进行命题第一个点是围绕导数的几何意义展开,设计求曲线的切线方程,根据切线方程求参数值等问题,这类试题在考查导数的几何意义的同时也考查导数的运算、函数等知识,试题的难度不大;第二个点是围绕利用导数研究函数的单调性、极值(最值)展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,主要考查通过转化使用导数研究函数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;本题涉及第一个点和第二个点,主要注意问题的转化,转化为不等式恒成立,转化为二次函数的性质21(本小题满分12分,(1)小问5分,(2)小问7分)如题(21)图,椭圆的左、右焦点分别为过的直线交椭圆于两点,且(1)若,求椭圆的标准方程(2)若求椭圆的离心率【答案】(1);(2)【考点定位】考查椭圆的标准方程,椭圆的几何性质.,直线和椭圆相交问题,考查运算求解能力【名师点晴】确定圆锥曲线方程的最基本方法就是根据已知条件得到圆锥曲线系数的方程,解方程组得到系数值注意在椭圆中c2a2b2,在双曲线中c2a2b2.圆锥曲线基本问题的考查的另一个重点是定义的应用;求椭圆与双曲线的离心率的基本思想是建立关于a,b,c的方程,根据已知条件和椭圆、双曲线中a,b,c的关系,求出所求的椭圆、双曲线中a,c之间的比例关系,根据离心率定义求解如果是求解离心率的范围,则需要建立关于a,c的不等式学科网22(本小题满分12分,(1)小问4分,(2)小问8分) 在数列中,(1)若求数列的通项公式; (2)若证明:【答案】(1);(2)证明见解析. 来源:学。科。网【考点定位】等比数列的通项公式,数列的递推公式,不等式的证明,放缩法.,考查探究能力和推理论证能力,考查创新意识【名师点晴】数列是考查考生创新意识与实践精神的最好素材从近些年的高考试题来看,一些构思精巧、新颖别致、极富思考性和挑战性的数列与方程、函数(包括三角函数)、不等式以及导数等的综合性试题不断涌现,这部分试题往往以压轴题的形式出现,考查综合运用知识的能力,突出知识的融会贯通数列的问题难度大,往往表现在与递推数列有关,递推含义趋广,不仅有数列前后项的递推,更有关联数列的递推,更甚的是数列间的“复制”式递推;从递推形式上看,既有常规的线性递推,还有分式、三角、分段、积(幂)等形式在考查通性通法的同时,突出考查思维能力、代数推理能力、分析问题解决问题的能力本题第(1)小题通过递推式证明数列是等比数列,从而应用等比数列的通项公式求得通项,第(2)小题把数列与不等式结合起来,利用数列的递推式证明数列是单调数列,利用放缩法证明不等式,难度很大学科网高考一轮复习微课视频手机观看地址:http:/xkw.so/wksp