欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年高考数学知识点精选.pdf

    • 资源ID:50831054       资源大小:293.49KB        全文页数:9页
    • 资源格式: PDF        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年高考数学知识点精选.pdf

    20212021 高考数学知识点精选高考数学知识点精选数学是规律性很强的一门学科,同学想要学好数学,需要知道一些的学习方法,下面就是我给大家带来的高考数学学问点总结,盼望能关心到大家!高考数学学问点总结 11.定义:用符号,=,号连接的式子叫不等式。2.性质:不等式的两边都加上或减去同一个整式,不等号方向不变。不等式的两边都乘以或者除以一个正数,不等号方向不变。不等式的两边都乘以或除以同一个负数,不等号方向相反。3.分类:一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是 1 的不等式叫一元一次不等式。一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。4.考点:解一元一次不等式(组)1依据详细问题中的数量关系列不等式(组)并解决简洁实际问题用数轴表示一元一次不等式(组)的解集高考数学学问点总结 2考点一:集合与简易规律集合部分一般以选择题消失,属简单题。重点考查集合间关系的理解和熟悉。近年的试题加强了对集合计算化简力量的考查,并向无限集进展,考查抽象思维力量。在解决这些问题时,要留意利用几何的直观性,并注意集合表示方法的转换与化简。简易规律考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、规律联结词、“充要关系”、命题真伪的推断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用规律用语表达数学解题过程和规律推理。考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10 分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简洁应用,如求函数的单调区间、极值与最值等,通常以客观题的形式消失,属于简单题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式消失,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。2考点三:三角函数与平面对量一般是 2 道小题,1 道综合解答题。小题一道考查平面对量有关概念及运算等,另一道对三角学问点的补充。大题中假如没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面对量为主的试题,要留意数形结合思想在解题中的应用。向量重点考查平面对量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简洁线性规划问题、基本不等式的应用等,通常会在小题中设置1 到 2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的敏捷应用,一道解答题大多凸显以数列学问为工具,综合运用函数、方程、不等式等解决问题的力量,它们都属于中、高档题目.高考数学学问点总结 3一、排列1 定义(1)从n个不同元素中取出m个元素,根据肯定的挨次排成一列,叫做从 n 个不同元素中取出 m 个元素的一排列。(2)从 n 个不同元素中取出 m 个元素的全部排列的个数,叫做从3n 个不同元素中取出 m 个元素的排列数,记为 Amn.2 排列数的公式与性质(1)排列数的公式:Amn=n(n-1)(n-2)(n-m+1)特例:当 m=n 时,Amn=n!=n(n-1)(n-2)321规定:0!=1二、组合1 定义(1)从 n 个不同元素中取出 m 个元素并成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合(2)从 n 个不同元素中取出 m 个元素的全部组合的个数,叫做从n 个不同元素中取出 m 个元素的组合数,用符号 Cmn 表示。2 比较与鉴别由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按肯定挨次排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的挨次并成一组这一个步骤。排列与组合的区分在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的挨次有关。因此,所给问题是否与取出元素的挨次有关,是推断这一问题是排列问题还是组合问题的理论依据。三、排列组合与二项式定理学问点1.计数原理学问点 乘 法 原 理:N=n1n2n3nM(分 步)加 法 原 理:4N=n1+n2+n3+nM(分类)2.排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)-(n-m+1)=n!/(n-m)!Ann=n!Cnm=n!/(n-m)!m!Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1kk!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满意特别元素的要求,再考虑其他元素.以位置为主考虑,即先满意特别位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必需在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应留意:(1)把详细问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避开“选取”时重复和遗漏;(4)列出式子计算和作答.常常运用的数学思想是:分类争论思想;转化思想;对称思想.4.二项式定理学问点:(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+Cnran-rbr+-+5Cnn-1abn-1+Cnnbn特殊地:(1+x)n=1+Cn1x+Cn2x2+Cnrxr+Cnnxn主要性质和主要结论:对称性 Cnm=Cnn-m二项式系数在中间。(要留意 n 为奇数还是偶数,答案是中间一项还是中间两项)全部二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+Cnr+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1通项为第 r+1 项:Tr+1=Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。5.二项式定理的应用:解决有关近似计算、整除问题,运用二项绽开式定理并且结合放缩法证明与指数有关的不等式。6.留意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区分,在求某几项的系数的和时留意赋值法的应用。高考数学学问点总结 4不等式这部分学问,渗透在中学数学各个分支中,有着非常广泛的应用。因此不等式应用问题体现了肯定的综合性、敏捷多样性,对数学各部分学问融会贯穿,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围非常广泛,它始终贯串在整个中学数学之中。6诸如集合问题,方程(组)的解的争论,函数单调性的讨论,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着亲密的联系,很多问题,最终都可归结为不等式的求解或证明。学问整合1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法亲密相关,要擅长把它们有机地联系起来,相互转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较简单的不等式化归为较简洁的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、肯定值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解亲密相关,要擅长把它们有机地联系起来,相互转化和相互变用。3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较简单的不等式化归为较简洁的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。74。证明不等式的方法敏捷多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟识各种证法中的推理思维,并把握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)变形推断符号(值)。高考数学学问点总结 5数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题常常是综合题,常常把数列学问和指数函数、对数函数和不等式的学问综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探究性问题是高考的热点,常在数列解答题中消失。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类争论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关学问,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它学问的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题8为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最终一题难度较大。1.在把握等差数列、等比数列的定义、性质、通项公式、前n 项和公式的基础上,系统把握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,敏捷地运用数列学问和方法解决数学和实际生活中的有关问题;2.在解决综合题和探究性问题实践中加深对基础学问、基本技能和基本数学思想方法的熟悉,沟通各类学问的联系,形成更完整的学问网络,提高分析问题和解决问题的力量,进一步培育同学阅读理解和创新力量,综合运用数学思想方法分析问题与解决问题的力量。2021 高考数学学问点归纳共享9

    注意事项

    本文(2022年高考数学知识点精选.pdf)为本站会员(赵**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开