欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    气象学与气候学电子教材.doc

    • 资源ID:50835589       资源大小:7.29MB        全文页数:207页
    • 资源格式: DOC        下载积分:50金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要50金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    气象学与气候学电子教材.doc

    气象学与气候学电子教材第一章 引论第一节 气象学、气候学的研究对象、任务和简史一、气象学与气候学的研究对象和任务由于地球的引力作用,地球周围聚集着一个气体圈层,构成了所谓大气圈。大气的分布是如此之广,以致地球表面没有任何地点不在大气的笼罩之下;它又是如此之厚,以致地球表面没有任何山峰能穿过大气层,而且就以地球最高峰珠穆朗玛峰的高度来和大气层的厚度相比,也只能算是“沧海之一粟”。我们人类就生活在大气圈底部的“下垫面”上。大气圈是人类地理环境的重要组成部分。地球是太阳系的一个行星,强大的太阳辐射是地球上最重要的能源。这个能源首先经过大气圈而后到达下垫面,大气中所发生的一切物理(化学)现象和过程,除决定于大气本身的性质外,都直接或间接与太阳辐射和下垫面有关。这些现象和过程对人类的生活和生产活动关系至为密切。人类在长期的生产实践中不断地对它们进行观测、分析、总结,从感性认识提高到理性认识,再在生产实践中加以验证、修订、逐步提高,这就产生了专门研究大气现象和过程,探讨其演变规律和变化,并直接或间接用之于指导生产实践为人类服务的科学气象学。气象学的领域很广,其基本内容是:(1)把大气当作研究的物质客体来探讨其特性和状态,如大气的组成、范围、结构、温度、湿度、压强和密度等等;(2)研究导致大气现象发生、发展的能量来源、性质及其转化;(3)研究大气现象的本质,从而能解释大气现象,寻求控制其发生、发展和变化的规律;(4)探讨如何应用这些规律,通过一定的措施,为预测和改善大气环境服务(如人工影响天气、人工降水、消雾、防雹等),使之能更适合于人类的生活和生产的需要。由于生产实践对气象学所提出的要求范围很广,气象学所涉及的问题很多,在气象学上用以解决这些问题的方法差异很大,再加上随着科学技术发展的日新月异,气象学乃分成许多部门。例如有专门研究大气物理性质及其变化原理的大气物理学;有着重讨论天气现象及其演变规律,并据以预报未来天气变化的天气学等,而其中与地理和环境科学关系最密切的是气候学。气候学研究的对象是地球上的气候。气候和天气是两个既有联系又有区别的概念。从时间尺度上讲,天气是指某一地区在某一瞬间或某一短时间内大气状态(如气温、湿度、压强等)和大气现象(如风、云、雾、降水等)的综合。天气过程是大气中的短期过程。而气候指的是在太阳辐射、大气环流、下垫面性质和人类活动在长时间相互作用下,在某一时段内大量天气过程的综合。它不仅包括该地多年来经常发生的天气状况,而且包括某些年份偶尔出现的极端天气状况。例如从上海近百年的长期观测中总结出,上海在6月中旬到7月中旬,经常会出现阴雨连绵、闷热、风小、潮湿的梅雨天气,但是有的年份(如1958年)会出现少雨的“空梅”,也有的年份(如1954年)67月连续阴雨5060天,出现“丰梅”。“开梅”和“断梅”的迟早也历年不同,这是上海初夏时的气候特征。由此可见,要了解一地的气候,必须作长时期的观测,才能总结出当地多年天气变化的情况,决不能单凭1958年一年的观测资料,来说上海初夏的气候是干旱无雨,也不能凭1954年一年的情况,就说上海的初夏气候有持续5060天的阴雨,那都是个别年份出现的具体天气现象,而气候是在多年观测到的天气基础上所得出的总结和概括。也就是说气候过程是在一定时段内由大量天气过程综合而得出的长期大气过程,二者之间存在着统计联系,从时间上反映出微观与宏观的关系。天气变化快,变化的周期短。天气过程的时间分段一般以5天以下为短期天气过程,510天为中期天气过程,10天3个月为长期天气过程。气候变化的周期相对于天气来讲是较长的,它的时间变化尺度有季际、年际、十年际、百年际、千年际、万年际等等。而决定气候变化的因子不仅是大气内部的种种过程,还决定于发生在大气上边界和下边界处的各种物理过程和化学过程。这就是要考虑其上边界处的太阳辐射,下垫面及大气内部的成分和环流的变化等对气候的影响。一个完整的气候系统应包括对气候形成分布和变化有直接或间接影响的各个环节,除太阳辐射这个主要能源之外,气候系统包括大气圈、水圈、冰雪圈、陆地表面和生物圈(动、植物和人类)等5个子系统。各个子系统内部以及各子系统彼此之间的各种物理、化学乃至生物过程的相互作用决定着气候的长期平均状态以及各种时间尺度的变化。气候系统是庞大的,而天气系统则可看作单纯的大气系统(如气旋、反气旋等等)。气候所包含的内容要比天气复杂得多。例如,对农作物来说,气候的干旱与否不仅决定于大气状况(降水量、空气湿度等),还取决于土壤状况和作物本身的耐旱性等等,这就不能用天气的总和来概括。由此可见,天气和气候这两个概念是有区别的。盖斯特(Gates)把某一地区的气候状态定义为:该地气候系统的全部成分在任一特定时段内的平均统计特征。这个定义的可取之处在于:(1)它指出气候的物质基础是气候系统,而不仅仅是大气,这和天气系统是有区别的;(2)气候是一个历史的概念,它和特定的时间阶段相联系,而不存在绝对气候的概念;(3)某一时段的气候状态是指这一时段气候系统各属性的平均统计特征,不像天气是指某一瞬时或某一短时间内大气状况和大气现象的综合。另外气候是发生在一定下垫面之上的,带有地方特点。气候学要求对气候系统进行定量观测和综合分析,对气候形成和变化的动态过程进行理论研究。通过各种手段(包括观测试验,数值模拟试验等等),探测气候系统中各个成员之间的各种相互作用,并展现气候形成和变化过程,理解气候变化的机制,以达到能够预测气候变化的目的。此外研究地球气候发展史,探索气候变化规律及其与人类活动的关系,从而能够采取有效措施,防御和减轻气候灾害,改善气候条件并进而为改造自然服务。现代气候学从概念上已经不再是气象学或地理学的一个分支的经典气候学,而是大气科学、海洋学、地球物理和地球化学、地理学、地质学、冰川学、天文学、生物学以至有关社会科学相互渗透,共同研究的交叉科学。在地理系、环境科学系等系科开设的气象学与气候学是以普通气象学为基础,以气候学为重点的专业基础课程,也是基本技术训练课程,它的基本任务是:(一)通过实践,掌握气象观测、气候统计分析和气候调查的方法,来记叙所观测到的气候现象,从定性和定量两方面说明它们的特性。(二)探讨它们的正确解释和研究它们的发展规律,特别要掌握天气演变和气候形成的规律性,了解和解释各不同地区的气候特征,弄清气候资源及其地理分布,进行气候分类和气候区划,研究气候变迁的原因及其规律。(三)应用已发现的规律,采取有效措施,充分利用气候资源,减少人类活动对气候的不利影响,防御或减少气候灾害,为有关的生产建设服务。(四)气象学、气候学与自然地理学、环境生态学和区域地理等有密切的依存关系,在教学中还应注意为这些有关后续课程奠定必要的基础。二、气象学与气候学的发展简史气象学与气候学是来源于生产实践,又服务于生产实践,并随着社会生产的发展,运用愈来愈进步的方法和技术而逐步提高的。综观三千多年来气象学、气候学发展的历史,源远流长。可以概括为以下三个时期:(一)萌芽时期萌芽时期主要指16世纪中叶以前这一漫长时期,这时期的特点是由于人类生活和生产的需要,进行一些零星的、局部的气象观测,积累了一些感性认识和经验,对某些天气现象做出一定的解释。我国在这一时期,在此领域中有不少成就,而且是居于世界领先行列的。远在三千年前,殷代甲骨文中已有关于风、云、雨、雪、虹、霞、龙卷、雷暴等文字记载,还常卜问未来十天的天气(称为“卜旬”),并将实况记录下来以资验证。春秋战国时代已能根据风、云、物候的观测记录,确定廿四节气,对指导黄河流域的农业生产季节意义很大,并沿用到现代。秦汉时代还出现了吕氏春秋、淮南子和礼记等内容涉及物候的书籍,这些都是世界上最早关于物候的文献。气象观测仪器也是我国的最早发明。在西汉时(公元前104年),已盛行伣,铜凤凰和相风铜鸟等三种风向器,到唐代又发展到在固定地方用相风鸟,在军队中用鸡毛编成的风向器测风。欧洲到20世纪才有用候风鸟测风的记载。在西汉时还利用羽毛、木炭等物的吸湿特性来测量空气湿度。宋代曾有僧赞宁(公元10世纪)利用土炭湿度计来预报晴雨。关于降水的记录亦以我国最早,据后汉书记载,在当时曾要求所辖各郡国,每年从立春到立秋这段时间内,向朝廷汇报雨泽情况,此后历代对各地雨情都很重视。所以我国的雨量和水旱灾记录丰富,历史亦最悠久。由于生产和生活的需要,人类迫切要求预知未来天气的变化,并在长期观测实践中,积累了不少经验。这些经验被用简短的韵语来表达,以便于记忆和运用,这就是天气谚语。我国天气谚语是极丰富的,除一部分封建迷信的内容外,大多是历代劳动人民看天经验的结晶。唐代黄子发的“相雨书”,元末明初出现的娄元礼编的田家五行和明末徐光启编写的农政全书·占候都是总结群众预报天气经验的著作。在国外,气象学的萌芽也很早,公元前4世纪希腊大哲学家亚里斯多德(Aristotle)所著气象学(Meteorologis)一书(约在公元前350年)综合论述水、空气和地震等问题对大气现象也作了适当的解释。现在气象学的外文名字就是从亚里斯多德的原书名演变而来的。“气候”一词也原出于希腊文K,表示倾斜的意思。古希腊人认为,地球上由于受到太阳光线倾斜角度的不同,才产生气候的差异,并已建立了关于热带、温带和寒带的概念。这种气候形成的概念流传很久,直到15世纪中期地理大探险时期,人们才认识到气候的形成不仅受太阳光线倾斜角度的影响,还与大气环流、海陆分布形势等有关。总之,在气象学萌芽时期,我国和希腊是露过锋芒的,这时从学科性质来讲,气象学与天文学是混在一起的,可以说具有天象学的性质。(二)发展初期发展初期包括16世纪中叶到19世纪末。这时由于欧洲工业的发展,推动了科学技术的发展,物理学、化学和流体力学等随着当时工业革命的要求,也快速发展起来。又由于航海技术的进步,远距离商业与探险队的活动,扩大了人们的视野,地理学乃蓬勃兴起,这就为介于物理学与地理学之间的边缘科学气象学、气候学的发展奠定了基础。再加上这一段时间内气象观测仪器纷纷发明,地面气象观测台、站相继建立,形成了地面气象观测网,并因无线电技术的发明,能够开始绘制地面天气图。由于具备了这些条件,气象学、气候学乃与天文学逐渐分离,成为独立的学科。1593年意大利学者伽利略(Galileo)发明温度表,1643年意大利学者托里拆利(Torricelli)发明气压表。这两种重要仪器的出现,使气象观测大大向前跃进一步。特别是气压与天气变化的关系最直接,气压表当时曾被誉为天气的“眼睛”。1783年索修尔(Saussure)发明毛发湿度表,有了这些仪器就为建立气象台站提供了必要的条件。1653年在意大利北部首先建立气象台,此后其它国家亦相继建立地面气象观测站,开始积累气象资料。但这时只有一些分散性的研究,缺少国际合作与交流。1854年,美法与帝俄在克里木半岛发生战争。英法联军舰队在黑海途中因风暴失事,近于全军覆没。这件事引起有关国家的重视。事后根据有关台站气象观测记录,发现此次风暴是由西欧移向东欧的。因此当时人们认为,如能广泛建立气象台站网,并通过电讯联系,则可预测未来的天气变化,并可采取相应的预防措施,以减少灾害性天气对各方面所造成的损失。这种认识为气象界的国际合作打开了局面,并促进了天气分析工作的开展。随着无线电报的发明和应用,使气象观测的结果能很快地传达到各地,为绘制天气图创造了条件。在18601865年间各国纷纷绘出了天气图。有了天气图这个工具,使气象学的发展大大向前跨进了一步。这一时期气象学与气候学的主要研究成果有:关于海平面上风压关系定律、气旋模式和结构、大气中光电现象和云雨形成的初步解释、大气环流的若干现象解释等。从19世纪开始,陆续出版了一些比较有质量的气候图,如世界年平均气温分布图、世界月平均气压分布图、世界年降水量分布图等。此外,德国学者汉恩(Hann)于1883年开始陆续出版了气候学手册三大卷,这是气候学上最早的巨著。我国气象学虽有悠久的历史,在萌芽时期曾处于世界先进行列,但由于封建统治的压抑,生产水平低下,气象学处于长期停顿状态。在这一时期,帝国主义为了侵略我国,纷纷在我国设立气象观测机构,收集气象资料为其军事、经济侵略服务。最早来我国境内,用近代气象仪器进行气象观测的是法国传教士,他于1743年在北京设立测候所。其后从1830年起俄国又断断续续地派人来北京做气象观测。1873年法国天主教会在上海徐家汇创建观象台,1893年德国人在山东青岛建立青岛观象台,此外还有在英国人掌握之下的海关测候所等共43处(都位于沿海、沿江的港口),他们都为各自的军事、航行、商船服务,我国政府无权过问,这时我国的气象事业完全是半殖民地性质的。(三)发展时期从20世纪以来是气象学与气候学的发展时期。这一时期总的特点是:随着生产发展的需要和技术的进步,不但进行地面气象观测,也进行高空直接观测,从而摆脱了定性描述阶段,进入到定量试验阶段,从认识自然,逐步向预测自然,控制和改造自然的方向发展。这一时期又可分为早期和近期两个阶段。1.早期在20世纪的前50年。这时气象观测开始向高空发展,以风筝、带人气球及火箭等为高空观测工具,其所到达的高度当然是有限的,但已为高空气象学的发展奠定了基础。在此期间气象学的发展中有三大重要进展。(1)锋面学说:在第一次世界大战期间,由于相邻国家气象资料无法获得,挪威建立了比较稠密的气象网。挪威学者贝坚克尼父子(V.Bjerknes和J.Bjerknes)等应用物理学和流体力学的理论,通过长期的天气分析实践,创立了气旋形成的锋面学说,从而为进行12天的天气预报奠定了物理基础。(2)长波理论:本世纪3040年代,由于要求能早期预报出灾害性天气,再加上有了无线电探空和高空测风的普遍发展,能够分析出较好的高空天气图。瑞典学者罗斯贝(Rossby)等研究大气环流,提出了长波理论。它既为进行24天的天气预报奠定了理论基础,同时也使气象学由两度空间真正发展为三度空间的科学。(3)降雨学说:在本世纪30年代,贝吉龙-芬德生(Bergeron-Findeison)从研究雨的形成中,发现云中有冰晶与过冷却水滴共存最有利于降雨的形成,从而提出了降雨学说。1947年又发现干冰和碘化银落入过冷却水滴中可以产生大量冰晶,这就为人工影响冷云降水提供了途径。进一步研究还发现在热带暖云中由于大、小水滴碰并也可导致降雨,这又为人工影响暖云降水奠定了理论基础。由此人类开始从认识自然进入人工影响局部天气时代。(4)在气候学方面也有长足的进展,突出表现在:创立了气候型的概念和几种气候分类法,如柯本(W.Koppen)、桑氏威特(C.W.Thornthwaite)、阿里索夫(.)等各具特色的气候分类法。19301940年间柯本和盖格尔(R.Qeiger)出版了五卷气候学手册,着重从动力学方面研究气候的形成和变化,发展了动力气候学。此外对贴近地面层的小气候研究也逐步精确化和定量化。2.近期本世纪50年代以后为近期。由于电子计算机和新技术如雷达、激光、遥感及人造卫星等的使用,大大地促进了气象学与气候学的发展。其主要表现如下:(1)开展大规模的观测试验在50年代以前,国际上曾在1882年和1932年组织过两次对南北极区进行气象考察,称为国际极年,并取得了一些高空气象和太阳与地球关系的资料。在50年代以后又进行过多次至少有几十个国家参加的大规模大气观测试验,而且规模一次比一次大。例如1977年12月1979年11月进行的一次大规模大气观测试验,有一百多个国家参加,其中也有我国参加。这次全球大气试验是以5个同步卫星和2个近极地轨道卫星为骨干,配合气象火箭,并与世界各地常规的地面气象观测站、自动气象站、飞机、船舶、浮标站和定高气球等相结合,组成几个全球性的较完整的立体观测系统。这一全球性观测计划是试图解决1014天之间的天气预报,进一步了解天气现象形成的物理过程和物理原因。(2)对大气物理现象进行数值模拟试验气象学、气候学不像物理、化学那样可以在室内进行实验,而是以地球的大气层作为实验室。有了电子计算机才可能广泛地对各种大气物理现象进行精确的、定量的数值模拟试验,如从全球性环流到云内雨滴的生成过程都进行试验,并把云雾中的微观过程和动力的宏观过程结合起来,使气象学进入试验科学阶段。(3)把大气作为一个整体进行研究把对流层与平流层中、高纬地区与低纬地区,南半球与北半球结合起来研究,这在气象学与气候学的发展上又是一大跃进。人类对大气中的化学现象与化学过程也进行了多年的观测、分析和研究,并已形成了气象学中一个新支派大气化学。特别是近年来对大气污染的监测,探讨环境保护的措施,更促进了大气化学的进展。(4)气候学领域中的科学革命自本世纪70年代以来,气候异常现象频繁出现,已引起各国广泛的重视。再加上现代科学技术的迅速发展,气候学发生了重大变革,或者说是一场科学革命。如国际上召开的一系列气候学术会议所示,1972年在瑞典斯德哥尔摩召开联合国环境大会,在会上强调了地球气候对于人类及其福利有极重要的影响。1974年召开联合国粮食大会,探讨了气候对世界粮食生产的重要作用,呼吁世界气象组织和联合国粮农组织建立气候警报系统。1974年世界气象组织与世界科学联盟在瑞典斯德哥尔摩召开气候的物理基础及其模拟的国际讨论会,着重研究了气候形成的物理机制和气候与人类的关系,并提出了气候系统(Climate system)的概念和世界气候计划(WCP)。1979年在日内瓦召开了第一次世界气候大会(FWCC),批准了这一计划(这一计划包含四个子计划),并确认气候系统的研究是实施气候研究计划(WCRP)的重要理论基础。建立了WCP以后,又在各大洲相继召开了地区性的气候大会,进一步推动这个计划的实施。亚洲及西太平洋气候会议于1980年在我国广州召开。现在世界上已有数十个国家制订了国家气候计划(NCP),开展气候研究。国际上成立了政府间气候变化专业委员会(IPCC)。在1990年秋于日内瓦召开了第二次世界气候大会。1992年4月在巴西里约热内卢召开了“世界环境与发展大会”,提出了世界气候框架公约。由于气候变化问题与国家建设密切相关,气候变化与政策的关联愈益紧密,政府组织逐渐代替纯科学家的组织,在领导与推动气候研究中发挥更大的作用。气候工作者广泛地应用近代大气物理的理论和实验方法,把气候看作是一个复杂的气候系统,建立了气候理论模式,成功地发展了气候对各种自然过程发生影响的数值模拟。通过气候模式来研究不同时间尺度(一个季节、一年、十年或更长时间)和空间尺度(地区、区域和全球)气候的可预报性问题,现已取得一些可喜成果。另外,还加强了气候学各分支之间的联系,组织进行大规模的综合研究。最突出的实例是人类活动与气候相互影响的研究。人类大量砍伐森林,燃烧矿物燃料(煤、石油、天然气等),兴建城市等等,改变了下垫面的性质和大气成分,将会使气候发生深刻的变化,并影响许多自然过程和国民经济部门,如农业、渔业、水利工程、建筑工程和海洋运输等等。其研究范围愈来愈扩大,不仅涉及气候学的各个部门,并且和有关经济学科有密切联系。例如人类活动对气候的影响在城市中的表现最为突出,城市气候的形成、变化和改善等问题的研究都与城市规划、城市经济建设等问题密切相关。在这一时期,我国气象学、气候学也有一定的进展,奠基人就是竺可桢。竺氏在1927年创立了气象研究所,次年在南京北极阁建立气象台。这是继1913年北京成立观象台之后,我国自己设置的第二个设备较好的气象观测机构。此后20余年中,国内陆续建立了40多个气象站和100多个雨量站,开展了少数城市的高空探测、天气预报和无线电广播等业务。1941年在重庆成立中央气象局。但在半殖民地半封建的旧社会,气象事业很难发展。那时气象、气候方面的论著多偏重于我国气候区划和季节的划分,以及对我国的季风、寒潮、台风和旱涝问题的研究。解放后,我国气象事业得到迅速发展。在第一个五年计划期间,全国共建立了各级气象台站1378个,到1957年底全国各级气象台站已达1635个,比解放初期增加近22倍。40余年来兴建的天气和气候站网已遍布全国。我国的气象学与气候学研究进入了高度发展的时期。在基础理论方面,如大气环流和动力气象的研究,在天气学方面如中国天气、高原气象等研究,在卫星气象方面,如甚高分辨云图接受器的研制、卫星气象学和探测原理等研究都取得了显著的进展。在人工影响天气方面已开展了云雾物理、人工降水和人工消雹等工作,并已取得较好的效果。在气候学方面以竺可桢的物候学和关于中国近五千年来气候变迁的研究最负盛誉。其它如在区域气候、农业气候、物理气候、动力气候、应用气候、城市气候、气候的数值模拟和气候预测等方面都取得了可喜的成绩。我国是世界气象组织的重要成员国,1987年2月成立了国家气候委员会,组织编写了国家气候蓝皮书(1990年11月出版),制定了国家气候研究计划,其指导思想是以气候灾害监测和预报问题以及全球性气候变化可能对我国气候的影响问题为重点,同时考虑世界气候研究计划中所提出的问题和要求,以使气候研究工作既解决我国的需要,同时又对世界气候作出贡献。第二节 气候系统概述一、大气圈概述(一)大气的组成大气是由多种气体混合组成的气体及浮悬其中的液态和固态杂质所组成。表1·1列举了其气体成分,其中氮(N2)氧(O2)和氩(Ar)三者合占大气总体积的99.96,其它气体含量甚微。除表1·1大气的气体组成成分水汽外,这些气体在自然界的温度和压力下总呈气体状态,而且标准状况下(气压1013.25hPa,温度0)。密度约为1293g/m2。由于大气中存在着空气的垂直运动、水平运动、湍流运动和分子扩散,使不同高度、不同地区的空气得以进行交换和混合,因而从地面开始,向上直到90km处,空气主要成分(除水汽臭氧和若干污染气体外)的比例基本上是不变的。因此,在90km以下可以把干洁空气当成分子量为28.97的“单一成分”来处理。在90km以上,大气的主要成分仍然是氮和氧,但平均约从80km开始由于紫外线的照射,氧和氮已有不同程度的离解,在100km以上,氧分子已几乎全部离解为氧原子,到250km以上,氮也基本上都解离为氮原子。大气中的氧是一切生命所必须的,这是因为动物和植物都要进行呼吸,都要在氧化作用中得到热能以维持生命。氧还决定着有机物质的燃烧、腐败及分解过程。植物的光合作用又向大气放出氧并吸收二氧化碳。大气中的氮能够冲淡氧,使氧不致太浓,氧化作用不过于激烈。大量的氮可以通过豆科植物的根瘤菌固定到土壤中,成为植物体内不可缺少的养料。大气中的水汽来自江、河、湖、海及潮湿物体表面的水分蒸发和植物的蒸腾,并借助空气的垂直交换向上输送。空气中的水汽含量有明显的时空变化,一般情况是夏季多于冬季。低纬度暖水洋面和森林地区的低空水汽含量最大,按体积来说可占大气的4,而在高纬度寒冷干燥的陆面上,其含量则极少,可低于0.01。从垂直方向而言,空气中的水汽含量随高度的增加而减少。观测证明,在1.52km高度上,空气中水汽含量已减少为地面的一半;在5km高度,减少为地面的1/10;再向上含量就更少了。大气中水汽含量虽不多,但它是天气变化中的一个重要角色。在大气温度变化的范围内,它可以凝结或凝华为水滴或冰晶,成云致雨,落雪降雹,成为淡水的主要来源。水的相变和水分循环不仅把大气圈、海洋、陆地和生物圈紧密地联系在一起,而且对大气运动的能量转换和变化,以及对地面和大气温度都有重要的影响。表1·1中所列的臭氧、二氧化碳、甲烷、氮氧化物(N2O、NO2)和硫化物(SO2、H2S)等其在大气中的含量虽很少,但对大气温度分布及人类生活却有较大的影响。大气中的臭氧主要是由于在太阳短波辐射下,通过光化学作用,氧分子分解为氧原子后再和另外的氧分子结合而形成的。另外有机物的氧化和雷雨闪电的作用也能形成臭氧。大气中的臭氧分布是随高度、纬度等的不同而变化的。在近地面层臭氧含量很少,从10km高度开始逐渐增加,在1215km以上含量增加得特别显著,在2030km高度处达最大值,再往上则逐渐减少,到55km高度上就极少了。造成这一现象的原因是由于在大气的上层中,太阳短波的强度很大,使得氧分子解离增多,因此氧原子和氧分子相遇的机会很少,即使臭氧在此处形成,由于它吸收一定波长的紫外线,又引起自身的分解,因此在大气上层臭氧的含量不多。在2030km高度这一层中,既有足够的氧分子,又有足够的氧原子,这就造成了臭氧形成的最适宜条件,故这一层又称臭氧层。在低于这一层的空气中,太阳短波紫外线大大减少,氧分子的分解也就大为减弱,所以氧原子数量减少,以致臭氧形成减少。臭氧能大量吸收太阳紫外线,使臭氧层增暖,影响大气温度的垂直分布,从而对地球大气环流和气候的形成起着重要的作用。同时它还形成一个“臭氧保护层”,使得到达地表的对生物有杀伤力的短波辐射(波长小于0.3m)大大降低了强度。从而保护着地表生物和人类。观测表明,近年来大气平流层中的臭氧有减少的现象,尤以南极为最。据研究这与在制冷工业中人为排放氟氯烃的破坏作用有关(详见第八章第二节)。大气中的二氧化碳、甲烷、一氧化二氮等都是温室气体,它们对太阳辐射吸收甚少,但却能强烈地吸收地面辐射,同时又向周围空气和地面放射长波辐射。因此它们都有使空气和地面增温的效应。观测证明,近数十年来这些温室气体的含量都有与年俱增的趋势,这与人类活动关系十分密切(详见第八章)。由于工业、交通运输业的发展,在废气不加以回收利用的情况下,空气中增加了许多污染气体。表1·1中所列举的一氧化碳、氨、二氧化硫、硫化氢等都是污染气体。它们的含量虽微,但对人类,对气候环境都带来一定的危害。此外,大气中还悬浮着多种固体微粒和液体微粒,统称大气气溶胶粒子。固体微粒有的来源于自然界,如火山喷发的烟尘,被风吹起的土壤微粒,海水飞溅扬入大气后而被蒸发的盐粒,细菌、微生物、植物的孢子花粉,流星燃烧所产生的细小微粒和宇宙尘埃等;有的是由于人类活动,如燃烧物质排放至空气中的大量烟粒等。它们多集中于大气的底层。这多种多样的固体杂质,有许多可以成为水汽凝结的核心,对云、雾的形成起重要作用。同时固体微粒能散射、漫射和吸收一部分太阳辐射,也能减少地面长波辐射的外逸,对地面和空气温度有一定影响,并会使大气的能见度变坏。液体微粒是指悬浮于大气中的水滴和冰晶等水汽凝结物。它们常聚集在一起,以云、雾形式出现,不仅使能见度变坏,还能减弱太阳辐射和地面辐射,对气候有很大的影响。 (二)大气的结构大气总质量约5.3×1015t,其中有50集中在离地5.5km以下的层次内,在离地361000km余的大气层只占大气总质量的1。尽管空气密度愈到高空愈小,到700800km高度处,空气分子之间的距离可达数百米远,但即使再向上,大气密度也不会减少到零的程度。大气圈与星际空间之间很难用一个“分界面”把它们截然分开。目前我们只能通过物理分析,确定一个最大高度来说明大气圈的垂直范围。这一最大高度的划定,由于着眼点不同,所得的结论也不同。通常有两种划法:一是着眼于大气中出现的某些物理现象。根据观测资料,在大气中极光是出现高度最高的现象,它可以出现在1200km的高度上,因此可以把大气的上界定为1200km。这种根据在大气中才有,而在星际空间没有的物理现象确定的大气上界,称为大气的物理上界。另一种是着眼于大气密度,用接近于星际的气体密度的高度来估计大气的上界。按照人造卫星探测资料推算,这个上界大约在20003000km高度上。观测证明,大气在垂直方向上的物理性质是有显著差异的。根据温度、成分、电荷等物理性质,同时考虑到大气的垂直运动等情况,可将大气分为五层(图略)。1.对流层对流层是地球大气中最低的一层。云、雾、雨雪等主要大气现象都出现在此层。对流层是对人类生产、生活影响最大的一个层次,也是气象学、气候学研究的重点层次。对流层有三个主要特征:(1)气温随高度增加而降低:由于对流层主要是从地面得到热量,因此气温随高度增加而降低。高山常年积雪,高空的云多为冰晶组成,就是这一特征的明显表现。对流层中,气温随高度增加而降低的量值,因所在地区、所在高度和季节等因素而异。平均而言,高度每增加100m,气温则下降约0.65,这称为气温直减率,也叫气温垂直梯度,通常以表示: (2)垂直对流运动:由于地表面的不均匀加热,产生垂直对流运动。对流运动的强度主要随纬度和季节的变化而不同。一般情况是:低纬较强,高纬较弱;夏季较强,冬季较弱。因此对流层的厚度从赤道向两极减小。在低纬度地区平均为1718km,在中纬度地区为1012km,在高纬度地区为89km。在同一纬度,尤其是中纬度,对流层厚度夏季较大,冬季较小。同大气的总厚度比较起来,对流层是非常薄的,不及整个大气层厚度的1。但是,由于地球引力的作用,这一层却集中了整个大气3/4的质量和几乎全部的水汽。空气通过对流和湍流运动,高、低层的空气进行交换,使近地面的热量、水汽、杂质等易于向上输送,对成云致雨有重要的作用。(3)气象要素水平分布不均匀:由于对流层受地表的影响最大,而地表面有海陆分异、地形起伏等差异,因此在对流层中,温度、湿度等的水平分布是不均匀的。在对流层的最下层称为行星边界层或摩擦层。其范围一般是自地面到12km高度。边界层的范围夏季高于冬季,白昼高于夜晚,大风和扰动强烈的天气高于平稳天气。在这层里大气受地面摩擦和热力的影响最大,湍流交换作用强,水汽和微尘含量较多,各种气象要素都有明显的日变化。行星边界层以上的大气层称为自由大气。在自由大气中,地球表面的摩擦作用可以忽略不计。在对流层的最上层,介于对流层和平流层之间,还有一个厚度为数百米到12km的过渡层,称为对流层顶。这一层的主要特征是:气温随高度的增加突然降低缓慢,或者几乎不变,成为上下等温。对流层顶的气温在低纬地区平均为-83,在高纬地区约为-53。该层可阻挡对流层中的对流运动,从而使下边输送上来的水汽微尘聚集在其下方,使该处大气的混浊度增大。2.平流层自对流层顶到55km左右为平流层。在平流层内,随着高度的增高,气温最初保持不变或微有上升。大约到30km以上,气温随高度增加而显著升高,在55km高度上可达-3。平流层这种气温分布特征是和它受地面温度影响很小,特别是存在着大量臭氧能够直接吸收太阳辐射有关。虽然30km以上臭氧的含量已逐渐减少,但这里紫外线辐射很强烈,故温度随高度增加得以迅速增高,造成显著的暖层。平流层内气流比较平稳,空气的垂直混合作用显著减弱。平流层中水汽含量极少,大多数时间天空是晴朗的。有时对流层中发展旺盛的积雨云也可伸展到平流层下部。在高纬度20km以上高度,有时在早、晚可观测到贝母云(又称珍珠云)。平流层中的微尘远较对流层中少,但是当火山猛烈爆发时,火山尘可到达平流层,影响能见度和气温。3.中间层自平流层顶到85km左右为中间层。该层的特点是气温随高度增加而迅速下降,并有相当强烈的垂直运动。在这一层顶部气温降到-113-83,其原因是由于这一层中几乎没有臭氧,而氮和氧等气体所能直接吸收的那些波长更短的太阳辐射又大部分被上层大气吸收掉了。中间层内水汽含量更极少,几乎没有云层出现,仅在高纬地区的7590km高度,有时能看到一种薄而带银白色的夜光云,但其出现机会很少。这种夜光云,有人认为是由极细微的尘埃所组成。在中间层的6090km高度上,有一个只有白天才出现的电离层,叫做D层。4.热层热层又称热成层或暖层,它位于中间层顶以上。该层中,气温随高度的增加而迅速增高。这是由于波长小于0.175m的太阳紫外辐射都被该层中的大气物质(主要是原子氧)所吸收的缘故。其增温程度与太阳活动有关,当太阳活动加强时,温度随高度增加很快升高,这时500km处的气温可增至2000K;当太阳活动减弱时,温度随高度的增加增温较慢,500km处的温度也只有500K。热层没有明显的顶部。通常认为在垂直方向上,气温从向上增温至转为等温时,为其上限。在热层中空气处于高度电离状态,其电离的程度是不均匀的。其中最强的有两区,即E层(约位于90130km)和F层(约位于160350km)。F层在白天还分为F1和F2两区。据研究高层大气(在60km以上)由于受到强太阳辐射,迫使气体原子电离,产生带电离子和自由电子,使高层大气中能够产生电流和磁场,并可反射无线电波,从这一特征来说,这种高层大气又可称为电离层,正是由于高层大气电离层的存在,人们才可以收听到很远地方的无线电台的广播。此外,在高纬度地区的晴夜,在热层中可以出现彩色的极光。这可能是由于太阳发出的高速带电粒子使高层稀薄的空气分子或原子激发后发出的光。这些高速带电粒子在地球磁场的作用下,向南北两极移动,所以极光常出现在高纬度地区上空。5.散逸层这是大气的最高层,又称外层。这一层中气温随高度增加很少变化。由于温度高,空气粒子运动速度很大,又因距地心较远,地心引力较小,所以这一层的主要特点是大气粒子经常散逸至星际空间,本层是大气圈与星际空间的过渡地带。从总体来讲,大气是气候系统中最活跃,变化最大的组成部分,它的整体热容量为5.32×1015MJ,且热惯性小。当外界热源发生变化时,通过大气运动对垂直的和水平的热量传输,使整个对流层热力调整到新热量平衡所需的时间尺度,大约为1个月左右,如果没有补充大气的动能过程,动能因摩擦作用而消耗尽的时间大约也是1个月。二、水圈、陆面、冰雪圈和生物圈概述(一)水圈水圈包括海洋、湖泊、江河、地下水和地表上的一切液态水,其中海洋在气候形成和变化中最重要。海洋是由世界大洋和邻近海域的含盐海水所组成。其总面积为3.6亿km2,约占地球表面的71,相当于陆地面积的2.5倍。由图1·3可见,海洋的分布在南北半球是不对称的。在北极,是由大陆包围着的北冰洋,而南极则是广大海洋包围着的南极大陆。南半球海洋的面积远大于北半球。海洋被插入其中的大陆分隔成不同的区域,按其大小而言,依次有太平洋、大西洋、印度洋和北冰洋。 海水是由液态水和溶于水中的盐分及气体所组成的。在每1000g海水中溶有NaCl23g,MgCl2和Na2S分别为5g和4g,此外还有少量CaCl2和KCl及其它微量盐分。海水中还溶有少量的大气中的各种气体,其中以O2和CO2对海洋生物过程和气候过程十分重要。由于海洋对太阳辐射的反射率比陆面小,海洋单位面积所吸收的太阳辐射能比陆地多2550。全球海洋表层的年平均温度要比全球陆面温度约高10左右。海面受热后由于波浪的作用,将热量向下传输混合,产生一个暖层。暖层平均水温在2025左右。在暖层之下水温迅速下降,成为斜温层。斜温层之下是水温很低的第三层。在第三层底部水温约在05左右。在极地海洋地区从表面至洋底皆为冷水层。据估算,到达地表的太阳辐射能约有80为海洋表面所吸收。通过海水内部的运动,海洋上层平均厚度约为240m的水温有季节变化,其质量为8.7×1010t,热容量为36.45×1016MJ/;而陆面温度有季变的平均厚度只有10m,质量为3×1015t,其热容量只有2.38×1015MJ/。大气、海洋活动层和陆地活动层的质量比是110.40.55,热容量比是168.50.45。可见,无论从力学和热力学效应来看,海洋在气候系统中具有最大的惯性,是一个巨大的能量贮存库。如果仅考虑100m深的表层海水,即占整个气候系统总热量的95.6。仅此一端就可见其在气候系统中的重要性。上层海洋与大气或冰的相互作用时间尺度为几个月到几年,而深层海洋的热力调整时间则为世纪尺度。 (二)陆面陆面有时亦称岩石圈。岩石圈的变化时间尺度甚长,其中如山脉形成的时间尺度约为1

    注意事项

    本文(气象学与气候学电子教材.doc)为本站会员(赵**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开