欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    可测函数收敛性.ppt

    • 资源ID:50956133       资源大小:962KB        全文页数:17页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    可测函数收敛性.ppt

    关于可测函数的收敛性第一张,PPT共十七页,创作于2022年6月函数列的几种收敛定义函数列的几种收敛定义一致收敛:注:近似地说一致收敛是函数列收敛慢的程度能有个控制 近似地说一致连续是函数图象陡的程度能有个控制fn(x)=xn点点收敛:记作第二张,PPT共十七页,创作于2022年6月1-例:函数列fn(x)=xn ,n=1,2,在(0,1)上处处收敛到f(x)=0,但不一致收敛,但去掉一小测度集合(1-,1),在留下的集合上一致收敛fn(x)=xn第三张,PPT共十七页,创作于2022年6月几乎处处收敛几乎处处收敛:记作记作 (almost everywhere(almost everywhere)即:去掉某个零测度集,在留下的集合上处处收敛即:去掉某个小(任意小)测度集,在留下的集合上一致收敛几乎一致收敛:记作 (almost uniformly)第四张,PPT共十七页,创作于2022年6月依测度收敛依测度收敛:记作记作注:从定义可看出,l几乎处处收敛强调的是在点上函数值的收敛(除一零测度集外)l依测度收敛并不 指出函数列在哪个点上的收敛,其要点在于误差超过的点所成的集的测度应随n趋于无穷而趋于零,而不论点集的位置状态如何第五张,PPT共十七页,创作于2022年6月不依测度收敛不依测度收敛依测度收敛第六张,PPT共十七页,创作于2022年6月几种收敛的区别几种收敛的区别说明:当n越大,取1的点越多,故fn(x)在R+上处处收敛于1(1 1)处处收敛但不依测度收敛)处处收敛但不依测度收敛n 在R+上处处收敛于 f(x)=1,所以fn(x)在R+上不依测度收敛于1,另外f fn n 不几乎一致收敛于不几乎一致收敛于1 1第七张,PPT共十七页,创作于2022年6月f fn n不几乎一致收敛于不几乎一致收敛于f f几乎一致收敛:记作 (almost uniformly)即:去掉某个小(任意小)测度集,在留下的集合上一致收敛即:去掉 测度集,在留下的集合上仍不一致收敛任意 ()适当小小第八张,PPT共十七页,创作于2022年6月fn不几乎一致收敛于f即:去掉任意小(适当小)测度集,在留下的集合上仍不一致收敛不几乎一致收敛于f(x)=1n第九张,PPT共十七页,创作于2022年6月(2 2)依测度收敛但处处不收敛)依测度收敛但处处不收敛0 1f1f60 1/4 3/4 10 1/4 3/4 10 1/4 3/4 10 1/4 3/4 1f7f5f40 1f30 1f20 1/8 1/4 1f8第十张,PPT共十七页,创作于2022年6月依测度收敛但处处不收敛依测度收敛但处处不收敛 取E=(0,1,n=2k+i,0i2k,k=0,1,2,3,说明:对任何x(0,1,fn(x)有两个子列,一个恒为1,一个恒为0,所以fn(x)在(0,1上处处不收敛;第十一张,PPT共十七页,创作于2022年6月例:函数列fn(x)=xn在(0,1)上处处收敛到f(x)=0,但不一致收敛,但去掉一小测度集合(1-,1),在留下的集合上一致收敛收敛的联系(收敛的联系(叶果洛夫定理的引入叶果洛夫定理的引入)1-fn(x)=xn第十二张,PPT共十七页,创作于2022年6月三种收敛的联系三种收敛的联系即:去掉某个小(任意小)测度集,在留下的集合上一致收敛几乎处处收敛与几乎一致收敛(叶果洛夫定理)设mE+,fn,f在E上几乎处处有限且可测,(即:可测函数列的收敛“基本上”是一致收敛)即:去掉某个零测度集,在留下的集合上处处收敛第十三张,PPT共十七页,创作于2022年6月第十四张,PPT共十七页,创作于2022年6月引理:设mE+,fn,f在E上几乎处处有限且可测,证明:由于 为零测度集,故不妨令 fn,f在E上处处有限,从而有:关于N单调减小第十五张,PPT共十七页,创作于2022年6月几乎处处收敛与依测度收敛几乎处处收敛与依测度收敛(LebesgueLebesgue定理)定理)设mE+,fn,f在E上几乎处处有限且可测,第十六张,PPT共十七页,创作于2022年6月感感谢谢大大家家观观看看第十七张,PPT共十七页,创作于2022年6月2022/10/17

    注意事项

    本文(可测函数收敛性.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开