2022届高三数学一轮复习(原卷版)专题26 统计(解析版).docx
-
资源ID:5098870
资源大小:637.67KB
全文页数:17页
- 资源格式: DOCX
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022届高三数学一轮复习(原卷版)专题26 统计(解析版).docx
专题26 统计 命题规律内 容典 型考查抽样方法2019年高考全国卷文数用样本估计总体2019年高考全国卷文数样本期望、方差计算与在决策者中的应用2019年高考全国卷文数以解答题形式考查独立性检验的应用2020年高考全国卷文理数18回归方程求解与回归分析在实际中应用2020年高考全国卷文理数18命题规律一 考查抽样方法【解决之道】解决此类问题的关键在于理解简单随机抽、系统抽样、分层抽样,共同点是等可能抽样,区别为,简单随机抽样适合样本较少,系统抽样适合样本数目较多,是等距离抽样,分层抽样适合各部分差异较大,是按比例抽样.【三年高考】1.【2019年高考全国卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验若46号学生被抽到,则下面4名学生中被抽到的是( )A8号学生B200号学生C616号学生D815号学生【答案】C【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差,所以,若,解得,不合题意;若,解得,不合题意;若,则,符合题意;若,则,不合题意故选C2.【2018年高考全国卷文数】公司有大量客户,且不同年龄段客户对其服务的评价有较大差异为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是_【答案】分层抽样【解析】由于从不同年龄段客户中抽取,故采用分层抽样,故答案为:分层抽样命题规律二 利用样本估计总体【解决之道】解决此类问题的关键在于认真阅读所给样本数据的图表,利用图表中的信息,提炼出样本的原始信息,再利用相关方法计算样本的中位数、均值、方差估计总体的中位数、均值、方差等.【三年高考】1.【2020年高考天津卷4】从一批零件中抽取80个,测量其直径(单位:),将所得数据分为9组:,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间内的个数为( )A10B18C20D36【答案】B【解析】由题意可得,直径落在区间之间的零件频率为:,则区间内零件的个数为:,故选B2.【2018年高考全国卷文数】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是( )A新农村建设后,种植收入减少B新农村建设后,其他收入增加了一倍以上C新农村建设后,养殖收入增加了一倍D新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入为0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D正确;故选A3.【2019年高考全国卷文数】西游记三国演义水浒传和红楼梦是中国古典文学瑰宝,并称为中国古典小说四大名著某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过西游记或红楼梦的学生共有90位,阅读过红楼梦的学生共有80位,阅读过西游记且阅读过红楼梦的学生共有60位,则该校阅读过西游记的学生人数与该校学生总数比值的估计值为( )A0.5B0.6C0.7D0.8【答案】C【解析】由题意得,阅读过西游记的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7故选C命题规律三 样本的期望与方差求解与在决策中的应用【解决之道】通过对样本期望与方差的计算估计总体的期望与方差,通过对两组样本期望与方差的比较,即可做出决策.【三年高考】1.【2020年高考全国卷文数3】设一组样本数据的方差为,则数据的方差为( ) A B C D【答案】C【解析】因为数据的方差是数据的方差的倍,所以所求数据方差为,故选:C2.【2020年高考江苏卷3】已知一组数据的平均数为,则的值是 【答案】【解析】由题意得,解得3.【2020年高考上海卷8】已知有四个数,这四个数的中位数为3,平均数为4,则 【答案】36【解析】设,则,解得:,解得:,所以4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是_【答案】【解析】由题意,该组数据的平均数为,所以该组数据的方差是5.【2018年高考江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为_【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为6.【2019年高考全国卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表的分组企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表)(精确到0.01)附:【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为产值负增长的企业频率为用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%(2),所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%7.【2019年高考全国卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液每只小鼠给服的溶液体积相同、摩尔浓度相同经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表)【答案】(1),;(2)甲、乙离子残留百分比的平均值的估计值分别为,【解析】(1)由已知得,故(2)甲离子残留百分比的平均值的估计值为乙离子残留百分比的平均值的估计值为8.【2018年高考全国卷文数】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量频数13249265使用了节水龙头50天的日用水量频数分布表日用水量频数151310165(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)【答案】(1)见解析;(2)0.48;(3)【解析】(1)频率分布直方图如下:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m3的概率的估计值为0.48(3)该家庭未使用节水龙头50天日用水量的平均数为该家庭使用了节水龙头后50天日用水量的平均数为估计使用节水龙头后,一年可节省水9.【2020年高考全国卷文数17】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元该厂有甲、乙两个分厂可承接加工业务甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下: 甲分厂产品等级的频数分布表 乙分厂产品等级的频数分布表 等级ABCD频数40202020等级ABCD频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【解析】(1)由表可知,甲厂加工出来的一件产品为级品的概率为,乙厂加工出来的一件产品为级品的概率为(2)甲分厂加工件产品的总利润为元,甲分厂加工件产品的平均利润为元每件;乙分厂加工件产品的总利润为元,乙分厂加工件产品的平均利润为元每件,故厂家选择甲分厂承接加工任务命题规律四 以解答题形式考查独立性检验的应用【解决之道】独立性检验是研究两个分类变量相关关系的重要手段,独立性检验的一般步骤:(1)根据样本数据列出2×2列联表;(2)计算随机变量K2的观测值k,查下表确定临界值k0:(3)如果kk0,就推断“X与Y有关系”,这种推断犯错误的概率不超过P(K2k0);否则,就认为在犯错误的概率不超过P(K2k0)的前提下不能推断“X与Y有关”.【三年高考】1.【2020年高考全国卷文理数18】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级1(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为 1,2,3,4 的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”根据所给数据,完成下面的列联表,并根据列联表,判断是否有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次人次空气质量好空气质量不好附:【解析】(1)根据上面的统计数据,可得:该市一天的空气质量等级为1的概率为;该市一天的空气质量等级为2的概率为;该市一天的空气质量等级为3的概率为;该市一天的空气质量等级为4的概率为(2)由题意,计算得(3)列联表如下:人次400人次400总计空气质量好333770空气质量不好22830总计5545100由表中数据可得:,有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关2.【2020年高考山东卷19】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了天空气中的和浓度(单位:),得下表: 3218468123710(1)估计事件“该市一天空气中浓度不超过,且浓度不超过”的概率;(2)根据所给数据,完成下面列联表: (3)根据(2)中的列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?附:,【解析】(1)由表格可知,该市100天中,空气中的浓度不超过75,且浓度不超过150的天数有天,所以该市一天中,空气中的浓度不超过75,且浓度不超过150的概率为;(2)由所给数据,可得列联表为:合计641680101020合计7426100(3)根据列联表中的数据可得,因为根据临界值表可知,有的把握认为该市一天空气中浓度与浓度有关3.【2019年高考全国卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:P(K2k)0.0500.0100.001k3.8416.63510.828【答案】(1)男、女顾客对该商场服务满意的概率的估计值分别为,;(2)有95%的把握认为男、女顾客对该商场服务的评价有差异【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为,因此男顾客对该商场服务满意的概率的估计值为女顾客中对该商场服务满意的比率为,因此女顾客对该商场服务满意的概率的估计值为(2)由题可得由于,故有95%的把握认为男、女顾客对该商场服务的评价有差异4.【2018年高考全国卷文数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,【解析】(1)第二种生产方式的效率更高理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟因此第二种生产方式的效率更高(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟因此第二种生产方式的效率更高(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分(2)由茎叶图知列联表如下:超过不超过第一种生产方式155第二种生产方式515(3)由于,所以有99%的把握认为两种生产方式的效率有差异命题规律五 回归方程与回归分析在实际中的应用【解决之道】1.线性回归分析问题的类型及解题方法(1)求线性回归方程利用公式,求出回归系数,.待定系数法:利用回归直线过样本点的中心求系数.(2)利用回归方程进行预测,把线性回归方程看作一次函数,求函数值.(3)利用回归直线判断正、负相关,决定正相关还是负相关的是系数.(4)回归方程的拟合效果,可以利用相关系数判断,当|r|越趋近于1时,两变量的线性相关性越强.2.模型拟合效果的判断(1)残差平方和越小,模型的拟合效果越好.(2)相关指数R2越大,模型的拟合效果越好.(3)回归方程的拟合效果,可以利用相关系数判断,当|r|越趋近于1时,两变量的线性相关性越强.【三年高考】1.【2020年高考全国卷文理数5】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是( )( )A B C D 【答案】D【解析】由散点图分布可知,散点图分布在一个对数函数的图像附近,因此,最适合作为发芽率和温度的回归方程类型的是,故选D2.【2020年高考全国卷文理数18】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,其中和分别表示第个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,(1) 求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2) 求样本的相关系数(精确到);(3) 根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由附:相关系数,【解析】(1)样区野生动物平均数为,地块数为,该地区这种野生动物的估计值为(2)样本的相关系数为(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可3.【2018年高考全国卷文数】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型根据2000年至2016年的数据(时间变量的值依次为)建立模型:;根据2010年至2016年的数据(时间变量的值依次为)建立模型:(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由【答案】(1)模型:226.1亿元,模型:256.5亿元;(2)模型得到的预测值更可靠,理由见解析【解析】(1)利用模型,该地区2018年的环境基础设施投资额的预测值为=30.4+13.5×19=226.1(亿元)利用模型,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元)(2)利用模型得到的预测值更可靠理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型不能很好地描述环境基础设施投资额的变化趋势2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型得到的预测值更可靠(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型得到的预测值226.1亿元的增幅明显偏低,而利用模型得到的预测值的增幅比较合理,说明利用模型得到的预测值更可靠以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分