欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022届高三数学一轮复习(原卷版)课后限时集训44 空间点、直线、平面之间的位置关系 作业.doc

    • 资源ID:5099756       资源大小:372.04KB        全文页数:11页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022届高三数学一轮复习(原卷版)课后限时集训44 空间点、直线、平面之间的位置关系 作业.doc

    空间点、直线、平面之间的位置关系建议用时:45分钟一、选择题1下列命题中,真命题的个数为()如果两个平面有三个不在一条直线上的公共点,那么这两个平面重合; 两条直线可以确定一个平面;空间中,相交于同一点的三条直线在同一平面内;若M,M,l,则Ml.A1B2C3D4B根据公理2,可判断是真命题;两条异面直线不能确定一个平面,故是假命题;在空间,相交于同一点的三条直线不一定共面(如墙角),故是假命题;根据平面的性质可知是真命题综上,真命题的个数为2.2在正方体ABCD­A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A相交 B异面C平行 D垂直A由BCAD,ADA1D1知,BCA1D1,从而四边形A1BCD1是平行四边形,所以A1BCD1,又EF平面A1BCD1,EFD1CF,则A1B与EF相交3a,b,c是两两不同的三条直线,下面四个命题中,真命题是()A若直线a,b异面,b,c异面,则a,c异面B若直线a,b相交,b,c相交,则a,c相交C若ab,则a,b与c所成的角相等D若ab,bc,则acC对于A,B,D,a与c可能相交、平行或异面,因此A,B,D不正确,根据异面直线所成角的定义知C正确4在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A点P必在直线AC上B点P必在直线BD上C点P必在平面DBC内D点P必在平面ABC外A如图,因为EF平面ABC,而GH平面ADC,且EF和GH相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P必在直线AC上5如图所示,在底面为正方形,侧棱垂直于底面的四棱柱ABCD­A1B1C1D1中,AA12AB2,则异面直线A1B与AD1所成角的余弦值为()A. B.C. D.D连接BC1,易证BC1AD1,则A1BC1即为异面直线A1B与AD1所成的角连接A1C1,由AB1,AA12,则A1C1,A1BBC1,在A1BC1中,由余弦定理得cosA1BC1.二、填空题6已知AE是长方体ABCD­EFGH的一条棱,则在这个长方体的十二条棱中,与AE异面且垂直的棱共有 条4作出长方体ABCD­EFGH.在这个长方体的十二条棱中,与AE异面且垂直的棱有:GH、GF、BC、CD.共4条7已知在四面体ABCD中,E,F分别是AC,BD的中点若AB2,CD4,EFAB,则EF与CD所成角的度数为 30°如图,设G为AD的中点,连接GF,GE,则GF,GE分别为ABD,ACD的中位线由此可得GFAB,且GFAB1,GECD,且GECD2,FEG或其补角即为EF与CD所成的角又EFAB,GFAB,EFGF.因此,在RtEFG中,GF1,GE2,sinGEF,可得GEF30°,EF与CD所成角的度数为30°.8如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,GH与EF平行;BD与MN为异面直线;GH与MN成60°角;DE与MN垂直以上四个命题中,正确命题的序号是 如图,把平面展开图还原成正四面体,知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE与MN垂直,故正确三、解答题9已知空间四边形ABCD(如图所示),E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且CGBC,CHDC.求证:(1)E,F,G,H四点共面;(2)三直线FH,EG,AC共点证明(1)连接EF,GH,因为E,F分别是AB,AD的中点,所以EFBD.又因为CGBC,CHDC,所以GHBD,所以EFGH,所以E,F,G,H四点共面(2)易知FH与直线AC不平行,但共面,所以设FHACM,所以M平面EFHG,M平面ABC.又因为平面EFHG平面ABCEG,所以MEG,所以FH,EG,AC共点10如图所示,在三棱锥P­ABC中,PA底面ABC,D是PC的中点已知BAC,AB2,AC2,PA2.求:(1)三棱锥P­ABC的体积;(2)异面直线BC与AD所成角的余弦值解(1)SABC×2×22,三棱锥P­ABC的体积为VSABC·PA×2×2.(2)如图,取PB的中点E,连接DE,AE,则EDBC,所以ADE是异面直线BC与AD所成的角(或其补角)在ADE中,DE2,AE,AD2,cosADE.故异面直线BC与AD所成角的余弦值为.1在正三棱柱ABC­A1B1C1中,ABBB1,则AB1与BC1所成角的大小为()A30°B60°C75° D90°D将正三棱柱ABC­A1B1C1补为四棱柱ABCD­A1B1C1D1,连接C1D,BD,则C1DB1A,BC1D为所求角或其补角设BB1,则BCCD2,BCD120°,BD2,又因为BC1C1D,所以BC1D90°.2在正方体ABCD­A1B1C1D1中,M,N分别为棱CC1,A1D1的中点,则异面直线A1B与MN所成的角为()A30°B45° C60°D90°A如图,取C1D1的中点P,连接PM,PN,CD1.因为M为棱CC1的中点,P为C1D1的中点,所以PMCD1,所以PMA1B,则PMN是异面直线A1B与MN所成角的平面角设AB2,在PMN中,PMPN,MN,则cosPMN,即PMN30°.故选A.3.如图所示,在四面体ABCD中作截面PQR,若PQ与CB的延长线交于点M,RQ与DB的延长线交于点N,RP与DC的延长线交于点K.给出以下命题:直线MN平面PQR;点K在直线MN上;M,N,K,A四点共面其中正确结论的序号为 由题意知,MPQ,NRQ,KRP,从而点M,N,K平面PQR.所以直线MN平面PQR,故正确同理可得点M,N,K平面BCD.从而点M,N,K在平面PQR与平面BCD的交线上,即点K在直线MN上,故正确因为A直线MN,从而点M,N,K,A四点共面,故正确4如图,在四棱锥O­ABCD中,底面ABCD是边长为2的正方形,OA底面ABCD,OA2,M为OA的中点(1)求四棱锥O­ABCD的体积;(2)求异面直线OC与MD所成角的正切值解(1)由已知可求得正方形ABCD的面积S4,所以四棱锥O­ABCD的体积V×4×2.(2)如图,连接AC,设线段AC的中点为E,连接ME,DE,又M为OA中点,MEOC,则EMD(或其补角)为异面直线OC与MD所成的角,由已知可得DE,EM,MD,()2()2()2,即DE2EM2MD2,DEM为直角三角形,且DEM90°,tanEMD.异面直线OC与MD所成角的正切值为.5如图,平面ABEF平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,BADFAB90°,BCAD,BEFA,G,H分别为FA,FD的中点(1)求证:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?解(1)证明:由题设知,FGGA,FHHD,所以GHAD.又BCAD,故GHBC.所以四边形BCHG是平行四边形(2)C,D,F,E四点共面理由如下:由BEFA,G是FA的中点知,BEGF,所以EFBG.由(1)知BGCH,所以EFCH,故EC,FH共面又点D在直线FH上,所以C,D,F,E四点共面1平面过正方体ABCD­A1B1C1D1的顶点A,平面CB1D1,平面ABCDm,平面ABB1A1n,则m,n所成角的正弦值为()A.B.C. D.A根据平面与平面平行的性质,将m,n所成的角转化为平面CB1D1与平面ABCD的交线及平面CB1D1与平面ABB1A1的交线所成的角设平面CB1D1平面ABCDm1.平面平面CB1D1,m1m.又平面ABCD平面A1B1C1D1,且平面CB1D1平面A1B1C1D1B1D1,B1D1m1.B1D1m.平面ABB1A1平面DCC1D1,且平面CB1D1平面DCC1D1CD1,同理可证CD1n.因此直线m与n所成的角即直线B1D1与CD1所成的角在正方体ABCD­A1B1C1D1中,CB1D1是正三角形,故直线B1D1与CD1所成角为60°,其正弦值为.2在长方体ABCD­A1B1C1D1中,ABBC1,AA1,则异面直线AD1与DB1所成角的余弦值为()A.B.C. D.C如图,在长方体ABCD­A1B1C1D1的一侧补上一个相同的长方体EFBA­E1F1B1A1.连接B1F,由长方体性质可知,B1FAD1,所以DB1F为异面直线AD1与DB1所成的角或其补角连接DF,由题意,得DF,FB12,DB1.在DFB1中,由余弦定理,得DF2FBDB2FB1·DB1cosDB1F,即5452×2××cosDB1F,cosDB1F.11

    注意事项

    本文(2022届高三数学一轮复习(原卷版)课后限时集训44 空间点、直线、平面之间的位置关系 作业.doc)为本站会员(秦**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开