2022届高三数学一轮复习(原卷版)黄金卷02(理)(新课标Ⅱ卷)(原卷版).doc
-
资源ID:5101829
资源大小:586.15KB
全文页数:8页
- 资源格式: DOC
下载积分:20金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022届高三数学一轮复习(原卷版)黄金卷02(理)(新课标Ⅱ卷)(原卷版).doc
黄金卷02(新课标卷)理科数学本卷满分150分,考试时间120分钟。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则( )。A、B、C、D、2已知复数满足,则( )。A、B、C、D、3我国古代数学名著算法统宗中有如下问题:“诸葛亮领八员将,每将又分八个营,每营里面排八阵,每阵先锋有八人,每人旗头俱八个,每个旗头八队成,每队更该八个甲,每个甲头八个兵。”则问题中将官、先锋、旗头、队长、甲头、土兵共有( )。A、人B、人C、人D、人4霍兰徳职业能力测试问卷可以为大学生在择业方面提供参考,对人的能力兴趣等方面进行评估。某大学随机抽取名学生进行霍兰徳职业能力测试问卷测试,测试结果发现这名学生的得分都在内,按得分分成组:、 、,得到如图所示的频率分布直方图,则这名同学得分的中位数为( )。A、B、C、D、5设、,则、的大小关系为( )。 A、B、C、D、6已知双曲线:(,)的一个焦点坐标为,且两条渐近线的夹角为,则双曲线的标准方程为( )。A、或B、或C、或D、或7的展开式中,含项的系数为( )。A、B、C、D、8在,点是的重心,则的最小值是( ) 。A、B、C、D、9关于函数有下述四个结论:是偶函数:是周期为的函数;在区间上单调递减;的最大值为。其中正确结论的编号为( )。A、B、C、 D、10已知函数()有唯一的零点,则( )。A、B、C、D、11已知抛物线:,其准线与轴交于点,过其焦点的直线与抛物线相交于、两点,记直线、的斜率分别为、,则的最小值为( )。A、B、C、D、12如图为一个正方体与一个半球构成的组合体,半球的底面圆与正方体的上底面的四边相切,球心与正方形的中心重合,将此组合体重新置于一个球中(球未画出),使正方体的下底面的顶点均落在球的表面上,半球与球内切,设切点为,若四棱锥的表面积为,则球的表面积为( )。A、B、C、D、二、填空题:本题共4小题,每小题5分,共20分。13若实数、满足,且的最小值为,则实数的值为 。14已知函数(),若直线与曲线相切,则 。15某地区突发传染病公共卫生事件,广大医务工作者逆行而上,纷纷志愿去一线抗击疫情。某医院呼吸科共有名医生,名护士,其中名医生为科室主任,名护士为护士长。根据组织安排,从中选派人去支援抗疫一线,要求医生和护士均有,且科室主任和护士长至少有人参加,则不同的选派方案共有 种。16已知数列满足,则 , 。(本小题第一个空2分,第二个空3分)三、解答题(本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤)17(12分)在中、分别为角、所对的边,已知。(1)求角的大小;(2)若、,求的面积。18(12分)幼儿园组织“选妈妈”游戏:有四位妈妈分别躲在四个外观一模一样的花轿里让小朋友们去猜哪一个花轿里是自已的妈妈。假设各位小朋友都是随机选择,选到每一位妈妈都是等可能的。(1)已知妮妮的妈妈在某个花轿里,如果给妮妮两次机会单独去玩“选妈妈”游戏,求他选到自己妈妈的概率;(2)如果四位妈妈所对应的四位小朋友一起选择,一人只选一个花轿,而且每个人选的花轿都不相同,记恰好选到自己妈妈的人数为,求的分布列与数学期望。19(12分)如图所示,四棱锥中,底面,。(1)求证:平面平面;(2)若棱上存在一点,使得二面角的余弦值为,求直线与平面所成角的正弦值。20(12分)记抛物线:()的焦点为,过点的动直线与的交点为、。当的斜率为时,。(1)求抛物线的方程;(1)若,(),求的取值范围。21(12分)已知。(1)求函数的极值;(2)设,对于任意、,总有成立,求实数的取值范围。请考生在第22、23两题中任选一题作答。注意:只能做所选定的题目。如果多做,则按所做的第一个题目计分。22选修4-4:坐标系与参数方程(10分)在直角坐标系中,曲线的方程为(为参数),直线的方程为。以为极点,轴的非负半轴为极轴建立极坐标系。(1)求曲线和直线的极坐标方程;(2)已知射线的极坐标方程是,且与曲线和直线在第一条限的交点分别为、,求的长。23选修4-5:不等式选讲(10分)已知()(1)证明:;(2)若成立,求的取值范围。