欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    黑龙江省哈尔滨市第六中学2019届高三数学第二次模拟考试试题文(含解析).doc

    • 资源ID:5102254       资源大小:1.33MB        全文页数:20页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    黑龙江省哈尔滨市第六中学2019届高三数学第二次模拟考试试题文(含解析).doc

    黑龙江省哈尔滨市第六中学2019届高三第二次模拟考试数学(文)试题第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,若,则的取值范围是( )A. B. C. D. 【答案】B【解析】分析:结合数轴,根据,得的取值范围.详解:集合,集合,故选点睛:集合的基本运算的关注点(1)看元素组成集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图2.已知复数,则( )A. B. C. D. 【答案】D【解析】【分析】先计算出,然后对进行化简,得到答案【详解】.故选D项.【点睛】本题考查求复数的模及复数的四则运算,属于简单题.3.“且”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】判断且与互为条件和结论,看能否成立.【详解】当且时,成立,所以是充分条件,当时候,不一定能得到且,还有可能得到且,所以不是必要条件.因此“且”是“”的充分而不必要条件,故选A项【点睛】本题考查对数的性质,充分条件、必要条件,属于简单题.4.设椭圆的左焦点为,直线与椭圆交于两点,则的值是( )A. 2B. C. 4D. 【答案】C【解析】分析:设椭圆的右焦点为连接则四边形是平行四边形,根据椭圆的定义得到=2a得解.详解:设椭圆的右焦点为连接因为OA=OB,OF=O,所以四边形是平行四边形.所以,所以=|AF|+=2a=4,故答案为:C点睛:(1)本题主要考查椭圆的几何性质,意在考查学生对椭圆基础知识的掌握能力. (2)解答本题的关键是能观察到对称性,得到四边形是平行四边形,这一点观察到了,后面就迎刃而解了.5.从装有3双不同鞋子的柜子里,随机取出2只鞋子,则取出的2只鞋子不成对的概率为( )A. B. C. D. 【答案】B【解析】【分析】列举出满足所有的情况,找出符合题意的情况,由古典概型公式,得到答案.【详解】设三双鞋子分别为、,则取出两只鞋子的情况有其中,不成对的情况有 共12种由古典概型的公式可得,所求概率为,故选B.【点睛】本题考查通过列举法求古典概型,属于简单题.6.实数满足不等式组,若的最大值为5,则正数的值为( )A. 2B. C. 10D. 【答案】A【解析】【分析】根据条件中确定的两个不等式,可以确定出,所以第三个不等式可以转化为,画出可行域,然后对目标函数进行化简,得到取最大值时的最优解,得到关于的方程,得到答案.【详解】先由画可行域,发现,所以可得到,且为正数.画出可行域为(含边界)区域.,转化为,是斜率为的一簇平行线,表示在轴的截距,由图可知在点时截距最大,解得,即,此时,解得故选A项.【点睛】本题考查线性规划中已知目标函数最大值求参数,属于简单题.7.若,则( )A. -2B. C. 2D. 【答案】B【解析】【分析】由,结合,可求出和,得到,再求出的值.【详解】,可得,故选B项.【点睛】本题考查同角三角函数关系,两角和的正切值,属于简单题.8.运行下列程序框图,若输出的结果是,则判断框内的条件是( )A. B. C. D. 【答案】B【解析】【分析】根据循环语句的特点以及输出结果,可得判断条件需满足时进行的运算,不能满足时的运算,根据选项,得到答案.【详解】因为输出的结果是根据循环语句的特点,说明判断条件需满足时进行的运算,不能满足时的运算,四个选项中,只有B项满足要求,故选B项.【点睛】本题考查根据框图输出结果,填写判断条件,属于简单题.9.在四个正方体中,均在所在棱的中点,过作正方体的截面,则在各个正方体中,直线与平面不垂直的是( )A. B. C. D. 【答案】D【解析】对于选项D中图形,由于为,的中点,所以,故为异面直线所成的角且,即不为直角,故与平面不可能垂直,故选D.10.已知(,)是定义域为的奇函数,且当时,取得最大值2,则( )A. B. C. D. 【答案】A【解析】是奇函数,当时,取最大值则故选点睛:由条件利用正弦函数的奇偶性求得,再根据当时,取得最大值,求出,可得的解析式,再根据它的周期性,即可求得所给式子的值。11.已知函数与其导函数的图像如图,则函数的单调减区间为( )A. B. C. D. 【答案】B【解析】试题分析:由图可知,先减后增的那条曲线为的图象,先增再减最后增的曲线为的图象,当时,令,得,则,故的减区间为,,故选B.考点:1、函数的图象;2、函数的导数;3、函数的单调性.【方法点晴】本题考查函数的图象、函数的导数、函数的单调性,涉及分类讨论思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.首先由图可知,先减后增的那条曲线为的图象,先增再减最后增的曲线为的图象,当时,令,得,则,故的减区间为,.12.牛顿迭代法亦称切线法,它是求函数零点近似解的另一种方法,若定义是函数零点近似解的初始值,过点的切线为,切线与轴交点的横坐标,即为函数零点近似解的下一个初始值,以此类推,满足精度的初始值即为函数零点的近似解,设函数,满足应用上述方法,则( )A. B. C. D. 【答案】D【解析】【分析】根据题意,求在处的切线,得到切线与轴的交点横坐标,再求在处的切线,得到与轴的交点横坐标,再求在处的切线,得到与轴的交点横坐标【详解】,切线斜率,切线方程,令,得,切线斜率,切线方程,令,得,切线斜率,切线方程,令,得,故选D项【点睛】本题考查利用导数的几何意义求函数在某一点的斜率,有一定的计算量,属于中档题.第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在中,角的对边分别为,且,则的面积为_【答案】【解析】【分析】根据正弦定理得到的值,再求出,利用三角形面积公式,得到答案.【详解】在中,有正弦定理得,得到,所以【点睛】本题考查正弦定理解三角形,两角和的正弦公式,三角形面积公式,属于简单题.14.已知向量,向量在向量方向上的投影为,且,则_【答案】【解析】【分析】根据条件可得,而对两边平方便可得到,这样即可求出.【详解】由已知得,由得:,即,.故答案为:5.【点睛】本题考查根据向量坐标求向量的长度,一个向量在另一个向量方向上投影的定义及计算公式,以及向量数量积的计算.15.已知双曲线,其渐近线与圆相交,且渐近线被圆截得的两条弦长都为2,则双曲线的离心率为_【答案】【解析】【分析】先得到双曲线的一条渐近线为,与圆相交,弦长为,所以弦心距为,由圆心到渐近线的距离公式可得关系,再得到关系,求出离心率【详解】双曲线的一条渐近线为,与圆相交,弦长为,则弦心距为即圆心到渐近线S的距离为,得在双曲线中,即【点睛】本题考查双曲线渐近线的,点到直线的距离,弦心距与弦长之间的关系,双曲线离心率的求法,属于简单题.16.已知球的体积为,则球的内接圆锥的体积的最大值为_【答案】【解析】分析:首先根据题中所给的球的体积求得球的半径的大小,之后利用对应几何体的轴截面,找出内接圆锥的底面圆的半径,圆锥的高和球的半径之间满足的等量关系式,将圆锥的体积转化为高的函数,借助于均值不等式求得最大值.详解:设球的半径为,则有,整理得,即,设给球的内接圆锥的底面圆的半径为,高为,则有,而该圆锥的体积,利用均值不等式可得当的时候,即时取得最大值,且最大值为.点睛:该题所考查的是有关几何体的内接问题,在解题的过程中,直角三角形中摄影定理在寻求的关系时起着关键性的作用,还有就是在求最大值的时候,也可以应用导数来完成.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知为等差数列,且,前4项的和为16,数列满足,且数列为等比数列.()求数列和的通项公式;()求数列的前项和.【答案】(),.() .【解析】试题分析:()设的公差为,列出方程组,求得,得到数列的通项公式,再设的公比为,解得,进而得到数列的通项公式;()由()得,可采用分组求和的方法求的数列的前项和试题解析:()设的公差为,因为,前4项的和为16,所以,解得,所以.设的公比为,则,所以,得,所以.()由()得,所以 .18.市面上有某品牌型和型两种节能灯,假定型节能灯使用寿命都超过5000小时,经销商对型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年.新店面需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,型20瓦和型55瓦的两种节能灯照明效果相当,都适合安装.已知型和型节能灯每支的价格分别为120元、25元,当地商业电价为0.75元/千瓦时.假定该店面一年周转期的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯管更换.(用频率估计概率)()根据频率直方图估算型节能灯的平均使用寿命;()根据统计知识知,若一支灯管一年内需要更换的概率为,那么支灯管估计需要更换支.若该商家新店面全部安装了型节能灯,试估计一年内需更换的支数;()若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.【答案】()3440小时;()4;()应选择A型节能灯.【解析】【分析】()由频率直方图即可得到平均使用寿命;()根据题意即可得到一年内需更换的支数;()分别计算所花费用,即可作出判断.【详解】()由图可知,各组中值依次为,对应的频率依次为,故型节能灯的平均使用寿命为小时.()由图可知,使用寿命不超过小时的频率为,将频率视为概率,每支灯管需要更换的概率为,故估计一年内支型节能灯需更换的支数为.()若选择型节能灯,一年共需花费元;若选择型节能灯,一年共需花费元.因为,所以该商家应选择A型节能灯.【点睛】本题考查该商家应选择哪种型号的节能灯的判断,考查频率分布直方图等基础知识,考查运算求解能力,是中档题19.在直三棱柱中,为棱的中点,.(1)证明:平面;(2)已知,的面积为,为线段上一点,三棱锥的体积为,求.【答案】(1)见解析(2)【解析】试题分析:(1)取的中点,连接,可推出为的中点,从而推出四边形为平行四边形,即可证明平面;(2)过作于,连接,可推出平面,从而推出,设,表示出,根据的面积为,可求得得值,设到平面的距离为,根据,即可求得,从而求得.试题解析:(1)证明:取的中点,连接,.侧面为平行四边形为的中点,又四边形为平行四边形,则.平面,平面平面.(2)解:过作于,连接,平面.又平面.设,则,的面积为,.设到平面的距离为,则.与重合,.20.已知圆,圆心在抛物线上,圆过原点且与的准线相切.(1)求抛物线的方程;(2)设点,点(与不重合)在直线上运动,过点作的两条切线,切点分别为,求证:.【答案】(I);() 见解析.【解析】【分析】(1)根据圆和抛物线的位置关系,以及圆和准线相切这一条件得到方程,从而得到结果;(2)求出两条切线方程,再抽出方程,其两根为切点的横坐标,,通过韦达定理得到结果即可.【详解】(1)圆与抛物线准线相切,.又圆过和原点,.,解得.抛物线的方程为.(2)设,方程为.,抛物线在点处的切线的斜率,切线的方程为,即,化简得:,又因过点,故可得,即.同理可得:.为方程的两根,.【点睛】本题考查了抛物线的方程,直线与抛物线的位置关系,考查了方程思想、转化思想,考查了运算能力,属于难题21.已知函数的定义域为.(1)判断函数的零点个数,并给出证明;(2)若函数在上为增函数,求整数的最大值.(参考数据:,)【答案】()个;();【解析】试题分析: (1)对函数求导,由在恒成立,则在上为增函数,由,可判断出函数有唯一零点; (2)对函数求导,分离参变量,在上恒成立,构造新函数求导,由(1)可知,a小于等于在区间上的最小值,根据函数的单调性,求得函数最小值的取值范围,即可取得整数a的最大值.试题解析:解:()在上为增函数,且,故在上为增函数,又,则函数在上有唯一零点.()在上恒成立,当时显然成立,当时,可得在上恒成立, 令,则,由()可知:在上为增函数,故在上有唯一零点,则在区间上为减函数,在区间上为增函数,故时,有最小值, . 又,则,有,所以,令,则最小值,因,则的最小值大约在之间,故整数的最大值为6.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在直角坐标系中,曲线过点,其参数方程为(为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)求已知曲线和曲线交于两点,且,求实数的值.【答案】(1),(2)或.【解析】【分析】(1)利用参数方程、普通方程与极坐标方程的转化方法,求曲线的普通方程和曲线的直角坐标方程.(2)先将曲线的方程转化为标准参数方程,然后将其代入曲线的直角坐标方程中,因曲线和曲线有两个交点,所以整理后的关于的二次方程,初步确定的范围,再根据参数方程的几何意义可知,引入已知,分类讨论,求实数的值.【详解】(1)的参数方程,消参得普通方程为,的极坐标方程化为即;(2)将曲线的参数方程标准化为(为参数,)代入曲线得,由,得 设,对应的参数为,由题意得即或,当时,解得 ,当时,解得,综上:或.点睛:过点倾斜角为的直线标准参数方程为 (为参数),通过如下方式辨别标准直线参数方程:(1)系数平方和,(2)纵坐标系数为正.23.已知,.(1)求证:;(2)若不等式对一切实数恒成立,求实数的取值范围.【答案】()证明见解析;()【解析】试题分析:(1)由题意结合柯西不等式的结论即可证得题中的结论;(2)结合(1)的结论可得绝对值不等式,零点分段求解绝对值不等式可得实数的取值范围为.试题解析:()证明:由柯西不等式得,的取值范围是. ()由柯西不等式得.若不等式对一切实数恒成立,则,其解集为,即实数的取值范围为. - 20 -

    注意事项

    本文(黑龙江省哈尔滨市第六中学2019届高三数学第二次模拟考试试题文(含解析).doc)为本站会员(秦**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开