2022届高三数学一轮复习(原卷版)第九章 9.8曲线与方程-学生版.docx
-
资源ID:5103040
资源大小:310.73KB
全文页数:12页
- 资源格式: DOCX
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022届高三数学一轮复习(原卷版)第九章 9.8曲线与方程-学生版.docx
第1课时进门测判断下列结论是否正确(请在括号中打“”或“×”)(1)f(x0,y0)0是点P(x0,y0)在曲线f(x,y)0上的充要条件( )(2)方程x2xyx的曲线是一个点和一条直线( )(3)到两条互相垂直的直线距离相等的点的轨迹方程是x2y2.( )(4)方程y与xy2表示同一曲线( )(5)ykx与xy表示同一直线( )作业检查无第2课时阶段训练题型一定义法求轨迹方程例1已知两个定圆O1和O2,它们的半径分别是1和2,且|O1O2|4.动圆M与圆O1内切,又与圆O2外切,建立适当的坐标系,求动圆圆心M的轨迹方程,并说明轨迹是何种曲线已知ABC的顶点A(5,0),B(5,0),ABC的内切圆圆心在直线x3上,则顶点C的轨迹方程是()A.1 B.1C.1 (x>3) D.1 (x>4)题型二直接法求轨迹方程例2已知椭圆C:1(a>b>0)的一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程在平面直角坐标系xOy中,点P(a,b)为动点,F1,F2分别为椭圆1(a>b>0)的左,右焦点已知F1PF2为等腰三角形(1)求椭圆的离心率e;(2)设直线PF2与椭圆相交于A,B两点,M是直线PF2上的点,满足·2,求点M的轨迹方程题型三相关点法求轨迹方程例3如图所示,抛物线C1:x24y,C2:x22py(p>0)点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O)当x01时,切线MA的斜率为.(1)求p的值;(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O)设直线xy4a与抛物线y24ax交于两点A,B(a为定值),C为抛物线上任意一点,求ABC的重心的轨迹方程第3课时阶段重难点梳理1曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)0的实数解建立如下的对应关系:那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线2求动点的轨迹方程的基本步骤【知识拓展】1“曲线C是方程f(x,y)0的曲线”是“曲线C上的点的坐标都是方程f(x,y)0的解”的充分不必要条件2曲线的交点与方程组的关系:(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点重点题型训练典例已知抛物线y22px经过点M(2,2),椭圆1的右焦点恰为抛物线的焦点,且椭圆的离心率为.(1)求抛物线与椭圆的方程;(2)若P为椭圆上一个动点,Q为过点P且垂直于x轴的直线上的一点,(0),试求Q的轨迹1已知点F(,0),直线l:x,点B是l上的动点,若过点B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是()A双曲线 B椭圆C圆 D抛物线2方程(2x3y1)(1)0表示的曲线是()A两条直线 B两条射线C两条线段 D一条直线和一个射线3已知A(2,0),B(1,0)两点,动点P不在x轴上,且满足APOBPO,其中O为原点,则P点的轨迹方程是()A(x2)2y24(y0)B(x1)2y21(y0)C(x2)2y24(y0)D(x1)2y21(y0)4过椭圆1(a>b>0)上任意一点M作x轴的垂线,垂足为N,则线段MN中点的轨迹方程是_作业布置1设定点M1(0,3),M2(0,3),动点P满足条件|PM1|PM2|a(其中a是正常数),则点P的轨迹是()A椭圆 B线段C椭圆或线段 D不存在2若曲线C上存在点M,使M到平面内两点A(5,0),B(5,0)距离之差的绝对值为8,则称曲线C为“好曲线”以下曲线不是“好曲线”的是()Axy5 Bx2y29C.1 Dx216y3已知点P是直线2xy30上的一个动点,定点M(1,2),Q是线段PM延长线上的一点,且|PM|MQ|,则Q点的轨迹方程是()A2xy10 B2xy50C2xy10 D2xy504已知圆锥曲线mx24y24m的离心率e为方程2x25x20的根,则满足条件的圆锥曲线的个数为()A4 B3 C2 D15已知点A(1,0),直线l:y2x4,点R是直线l上的一点,若,则点P的轨迹方程为()Ay2x By2xCy2x8 Dy2x46平面直角坐标系中,已知两点A(3,1),B(1,3),若点C满足12(O为原点),其中1,2R,且121,则点C的轨迹是()A直线 B椭圆 C圆 D双曲线7曲线C是平面内与两个定点F1(1,0)和F 2(1,0)的距离的积等于常数a2(a>1)的点的轨迹给出下列三个结论:曲线C过坐标原点;曲线C关于坐标原点对称;若点P在曲线C上,则F1PF2的面积不大于a2.其中,所有正确结论的序号是_8已知ABC的顶点A,B坐标分别为(4,0),(4,0),C为动点,且满足sin Bsin Asin C,则C点的轨迹方程为_9.如图,P是椭圆1上的任意一点,F1,F2是它的两个焦点,O为坐标原点,且,则动点Q的轨迹方程是_10已知圆的方程为x2y24,若抛物线过点A(1,0),B(1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是_11已知实数m>1,定点A(m,0),B(m,0),S为一动点,点S与A,B两点连线斜率之积为.(1)求动点S的轨迹C的方程,并指出它是哪一种曲线;(2)若m,问t取何值时,直线l:2xyt0(t>0)与曲线C有且只有一个交点?12已知椭圆E:1(a>b>0)的离心率为,过左焦点且倾斜角为45°的直线被椭圆截得的弦长为.(1)求椭圆E的方程;(2)若动直线l与椭圆E有且只有一个公共点,过点M(1,0)作l的垂线,垂足为Q,求点Q的轨迹方程*13.如图,已知圆E:(x)2y216,点F(,0),P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于点Q.(1)求动点Q的轨迹的方程;(2)设直线l与(1)中轨迹相交于A,B两点,直线OA,l,OB的斜率分别为k1,k,k2(其中k>0),OAB的面积为S,以OA,OB为直径的圆的面积分别为S1,S2,若k1,k,k2恰好构成等比数列,求的取值范围12