北师大数学七年级下册全册导学案.doc
1.1 同底数幂的乘法一、学习目标1经历探索同底数幂乘法运算性质过程,进一步体会幂的意义2了解同底数幂乘法的运算性质,并能解决一些实际问题二、学习重点:同底数幂的乘法运算法则的推导过程以及相关计算三、学习难点:对同底数幂的乘法公式的理解和正确应用四、学习设计(一)预习准备预习书p2-4(二)学习过程1.试试看:(1)下面请同学们根据乘方的意义做下面一组题: =a3a4=a( ) (2)根据上面的规律,请以幂的形式直接写出下列各题的结果:= = = ×= 2.猜一猜:当,为正整数时候, =即am·an= (m、n都是正整数)3.同底数幂的乘法法则:同底数幂相乘 运算形式:(同底、乘法) 运算方法:(底不变、指加法)当三个或三个以上同底数幂相乘时,也具有这一性质, 用公式表示为 来源:学+科+网Z+X+X+K am·an·ap = am+n+p (m、n、p都是正整数)练习1. 下面的计算是否正确? 如果错,请在旁边订正(1)a3·a4=a12 (2)m·m4=m4 ( 3)a2·b3=ab5 (4)x5+x5=2x10(5)3c4·2c2=5c6 (6)x2·xn=x2n (7)2m·2n=2m·n (8)b4·b4·b4=3b42填空:(1)x5 ·( )=x 8 (2)a ·( )=a6x k b 1 . c o m(3)x · x3( )= x7 (4)xm ·( )x3m(5)x5·x( )=x3·x7=x( ) ·x6=x·x( ) (6)an+1·a( )=a2n+1=a·a( )例1计算(1)(x+y)3 · (x+y)4 (2)来源:学+科+网(3) (4)(m是正整数)变式训练计算(1)(2) (3). (4) (5)(a-b)(b-a)4 (6) (是正整数)拓展1、填空(1) 8 = 2x,则 x = (2) 8 × 4 = 2x,则 x = (3) 3×27×9 = 3x,则 x = .2、 已知am=2,an=3,求的值 3、 4、已知的值。 5、已知的值。回顾小结1同底数幂相乘法则要注重理解“同底、相乘、不变、相加”这八个字2解题时要注意a的指数是13解题时,是什么运算就应用什么法则同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆4-a2的底数a,不是-a计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a45若底数是多项式时,要把底数看成一个整体进行计算来源1.2幂的乘方与积的乘方第1课时 幂的乘方一、学习目标:1能说出幂的乘方与积的乘方的运算法则2能正确地运用幂的乘方与积的乘方法则进行幂的有关运算二、学习重点:会进行幂的乘方的运算。三、学习难点:幂的乘方法则的总结及运用。四、学习设计:(一)预习准备(1)预习书56页(2)回顾:计算(1)(x+y)2·(x+y)3 (2)x2·x2·x+x4·x (3)(0.75a)3·(a)4 (4)x3·xn-1xn-2·x4(二)学习过程:一、 1、探索练习: (62)4表示_个_相乘.a3表示_个_相乘.(a2)3表示_个_相乘.在这个练习中,要引学习生观察,推测(62)4与(a2)3的底数、指数。并用乘方的概念解答问题。 (62)4=_×_×_×_ =_(根据an·am=anm) =_ (33)5=_×_×_×_×_ =_(根据an·am=anm) =_ 64表示_个_相乘.(a2)3=_×_×_ =_(根据an·am=anm) =_(am)2=_×_ =_(根据an·am=anm) =_X|k|b|1.c|o|m(am)n=_×_××_×_ =_(根据an·am=anm)=_即 (am)n =_(其中m、n都是正整数)通过上面的探索活动,发现了什么?幂的乘方,底数_,指数_来源:学§科§网2、例题精讲类型一 幂的乘方的计算例1 计算 (54)3 (a2)3 (ab)24 随堂练习(1)(a4)3m; (2)()32; (ab)43类型二 幂的乘方公式的逆用例1 已知ax2,ay3,求a2xy; ax3y随堂练习(1)已知ax2,ay3,求ax3y(2)如果,求x的值随堂练习已知:84×432x,求xx k b 1 . c o m类型三 幂的乘方与同底数幂的乘法的综合应用例1 计算下列各题 (1) (a)2·a7 x3·x·x4(x2)4(x4)2 (4)(ab)2(ba)3、当堂测评 填空题:(1)(m2)5_;()32_;(ab)23_(2)-(-x)52·(-x2)3_;(xm)3·(-x3)2_(3)(-a)3·(an)5·(a1-n)5_; -(x-y)2·(y-x)3_(4) x12(x3)(_)(x6)(_)(5)x2m(m1)()m1 若x2m3,则x6m_(6)已知2xm,2yn,求8xy的值(用m、n表示)判断题(1)a5+a5=2a10 ( )(2)(s3)3=x6 ( )(3)(3)2·(3)4=(3)6=36 ( )(4)x3+y3=(x+y)3 ( ) (5)(mn)34(mn)26=0 ( )4、拓展:1、 计算 5(P3)4·(P2)3+2(P)24·(P5)2X|k|b|1.c|o|m2、 若(x2)n=x8,则m=_.3、 若(x3)m2=x12,则m=_。4、 若xm·x2m=2,求x9m的值。5、 若a2n=3,求(a3n)4的值。6、已知am=2,an=3,求a2m+3n的值.来源:Z§xx§k.Com回顾小结:1幂的乘方 (am)n_(m、n都是正整数)2语言叙述: 3幂的乘方的运算及综合运用。 1.2幂的乘方与积的乘方第2课时 积的乘方一、学习目标:1能说出幂的乘方与积的乘方的运算法则2能正确地运用幂的乘方与积的乘方法则进行幂的有关运算二、学习重点:积的乘方的运算。三、学习难点:正确区别幂的乘方与积的乘方的异同。四、学习设计:(一)预习准备(1)预习书78页(2)回顾:1、计算下列各式:(1) (2) (3)(4)(5)(6)(7) (8) (9)(10) (11)2、下列各式正确的是( )(A) (B) (C)(D)(二)学习过程:探索练习:1、 计算:2、 计算:3、 计算:从上面的计算中,你发现了什么规律?_ 4、猜一猜填空:(1) (2)(3) 你能推出它的结果吗?结论:例题精讲类型一 积的乘方的计算例1 计算(1)(2b2)5; (2)(4xy2)2 (3)(ab)2 (4)2(ab)35随堂练习(1) (2) (3)(-xy2)2 (4)3(nm)23类型二 幂的乘方、积的乘方、同底数幂相乘、整式的加减混合运算例2 计算(1)-(-x)52·(-x2)3 (2)(3)(xy)3(2x2y)2(3x3y)2 (4)(3a3)2·a3(a)2·a7(5a3)3随堂练习(1)(a2n-1)2·(an2)3 (2) (-x4)2-2(x2)3·x·x(-3x)3·x5w w w .x k b 1.c o m(3)(ab)23·(ab)34类型三 逆用积的乘方法则例1 计算 (1)82004×0.1252004; (2)(8)2005×0.1252004随堂练习0.2520×240 -32003·()2002类型四 积的乘方在生活中的应用例1 地球可以近似的看做是球体,如果用V、r分别代表球的体积和半径,那么Vr3。地球的半径约为千米,它的体积大约是多少立方千米?随堂练习w w w .x k b 1.c o m(1)一个正方体棱长是3×102 mm,它的体积是多少mm?(2)如果太阳也可以看作是球体,它的半径是地球的102倍,那么太阳的体积约是多少立方千米呢?”当堂测评一、判断题1(xy)3xy3() 2(2xy)36x3y3() 3(-3a3)29a6()4(x)3x3() 5(a4b)4a16b()二、填空题1-(x2)3_,(-x3)2_2(-xy2)2_381x2y10 ()2 4(x3)2·x5_ 5(a3)n(an)x(n、x是正整数),则x_6.(0.25)11×411_ (0.125)200×8201_4、拓展:(1) 已知n为正整数,且x2n4求(3x3n)213(x2)2n的值 (2) 已知xn5,yn3,求(xy)2n的值(3) 若m为正整数,且x2m3,求(3x3m)213(x2)2m的值来源:Z#xx#k.Com回顾小结:1.积的乘方 (ab)n (n为正整数)2语言叙述: 3积的乘方的推广(abc)n (n是正整数)1.3 同底数幂的除法第1课时 同底数幂的除法一、学习目标了解同底数幂的除法的运算性质,并能解决一些实际问题二、学习重点:会进行同底数幂的除法运算。新 课 标 第 一 网三、学习难点:同底数幂的除法法则的总结及运用(一)预习准备(1)预习书p9-13(2)思考:0指数幂和负指数幂有没有限制条件?(3)预习作业:1(1)28×28= (2)52×53=(3)102×105= (4)a3·a3=2(1)216÷28=(2)55÷53=(3)107÷105=(4)a6÷a3=(二)学习过程 上述运算能否发现商与除数、被除数有什么关系?得出:同底数幂相除,底数,指数即:am÷an=(,m,n都是正整数,并且m>n)练习:(1) (2)(3)(4)= (5)(6)(-ab)5÷(ab)2=(8)=提问:在公式中要求 m,n都是正整数,并且m>n,但如果m=n或m<n呢?计算:32÷32 103÷103 am÷am(a0)= (a0)32÷32=3()=3() 103÷103=10()=10() am÷am=a()=a()(a0)于是规定:a0=1(a0) 即:任何非0的数的0次幂都等于1最终结论:同底数幂相除:am÷an=am-n(a0,m、n都是正整数,且mn)想一想: 10000=104 , 16=24 1000=10(), 8=2() 100=10 () , 4=2() 10=10 (), 2=2() 猜一猜: 1=10() 1=2() 0.1=10() =2()0.01=10() =2()0.001=10() =2()负整数指数幂的意义:(,p为正整数)或(,p为正整数)例1 用小数或分数分别表示下列各数:练习:1下列计算中有无错误,有的请改正 来源:学。科。网Z。X。X。K2若成立,则满足什么条件?3若无意义,求的值4若,则等于?5若,求的的值6用小数或分数表示下列各数:(1) (2) (3) (4)(5)4.2(6)7(1)若 (2)若(3)若0.000 000 33×,则 (4)若拓展:8.计算:(n为正整数) 9已知,求整数x的值。回顾小结:同底数幂相除,底数不变,指数相减。1.3 同底数幂的除法第2课时 用科学记数法表示较小的数学习目标:1、会用科学记数法表示一些较小的数,并体会其中的意义。课堂流程:环节一、知识回顾:(时间 3 分钟,对子互批)1、=_ (0) ; _(0,p为正整数)2、用科学计数法表示:8684000000= -6030000000= 绝对值大于10的数记成a×10n的形式,其中1a<10,n是正整数,n等于 环节二、新知学习:(时间 15 分钟,小组合作,对子互说)探究任务一:1、例如: (1), (2)(3)小结:从上面的式子中,可以看出:最后结果中负指数的次数与小数中非零数前面零的 个数的关系是_2、练习:(1) 0.1= = 10 ; (2) 000006= =; (3) 0.000000000229=_× =_×_;新知学习: 一般地,一个小于1的正数可以表示成的形式.(其中n是负整数, 1a10.) 3、试一试:你能将下面的数用a×10n的形式表示吗?(爬板) (1)0.000 000 002= (2)0.000 000 32= (3)0000 04=, (4)-0.034=, (5) 0.000 000 45=, (6) 0. 003 009=。环节三、合作探究(时间 10 分钟,小组合作,对子互说,展示)1、完成课本第12页议一议环节四、巩固练习(时间 7 分钟,爬板,对子互批,展示)1:用科学记数法表示下列各数:(爬板、互批)(1)0.000001= (2)0.000611= (3) -0.00105=(4)-0.000000314= (5)0.017= (6)-0.00000901= 2:把下列科学记数法还原。(1)7.2×10-5 (2)-1.5×10-43、完成课本第13页随堂练习环节五、课堂检测(时间 5 分钟,互批、展示)1、用科学记数法表示下列各数。(1)0.0003267 (2)-0.0011 2、一枚一角硬币的直径约为0.022m,用科学记数法表示为( )A. B. C. D. 3、在电子显微镜下测得一个圆球体细胞的直径是5×10cm.,个这样的细胞排成的细胞链的长是( ) A B C D4、空气的密度是,请用小数把它表示出来。1.4 整式的乘法第1课时 单项式与单项式相乘一、学习目标:理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算二、学习重点:单项式乘法法则及其应用三、学习难点:理解运算法则及其探索过程w w w .x k b 1.c o m(一)预习准备(1)预习书p14-15(2)思考:单项式与单项式相乘可细化为几个步骤?(3)预习作业:1下列单项式各是几次单项式?它们的系数各是什么?次数:系数:2下列代数式中,哪些是单项式?哪些不是?3(1)(a5)5 (2) (a2b)3 (3)(2a)2(3a2)3 (4)(y n)2 y n-1(二)学习过程:wwW.x k B 1.c Om整式包括单项式和多项式,从这节课起我们研究整式的乘法,先学习单项式乘以单项式例1. 利用乘法交换律、结合律以及前面所学的幂的运算性质,计算下列单项式乘以单项式:(1) 2x2y·3xy2(2) 4a2x5·(-3a3bx) 解:原式=()()()解:原式=()()() ()单项式乘以单项式的乘法法则:单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式注意:法则实际分为三点:来源:学_科_网(1) 系数相乘有理数的乘法;此时应先确定结果的符号,再把系数的绝对值相乘相同字母相乘同底数幂的乘法;(容易将系数相乘与相同字母指数相加混淆)来源:学,科,网只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式(2)不论几个单项式相乘,都可以用这个法则(3)单项式相乘的结果仍是单项式例1 计算:(1) (-5a2b3)(-3a)(2) (2x)3(-5x2y) (3) =_ (4) (-3ab)(-a2c)2·6ab(c2)3 注意:先做乘方,再做单项式相乘练习:1. 判断:、单项式乘以单项式,结果一定是单项式 ( ) 两个单项式相乘,积的系数是两个单项式系数的积 ( ) 两个单项式相乘,积的次数是两个单项式次数的积 ( )两个单项式相乘,每一个因式所含的字母都在结果里出现( )2. 计算: x k b 1 . c o m (6)0.4x2y·(xy)2-(-2x)3·xy3来源:学+科+网拓展:3已知am=2,an=3,求(a3m+n)2的值4求证:52·32n+1·2n-3n·6n+2能被13整除、5回顾小结:单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。1.4 整式的乘法第2课时 单项式与多项式相乘一、学习目标经历探索整式的乘法运算法则的过程,会进行简单的整式的乘法运算二、学习重点:整式的乘法运算三、学习难点:推测整式乘法的运算法则(一)预习准备(1)预习书p16-17(2)思考:单项式与多项式相乘最容易出错的是哪点?(3)预习作业:(1) (2) (3)2(ab3) (4)(2xy2) ·3yx(5)(2a3b) (6ab6c) (6)3(ab2c+2bcc) (二)学习过程:1我们本单元学习整式的乘法,整式包括什么?2什么是多项式?怎么理解多项式的项数和次数?abymx整式乘法除了我们上节课学习的单项式乘以单项式外,还应该有单项式乘以多项式,今天将学习单项式与多项式相乘做一做:如图所示,公园中有一块长mx米、宽y米的空地,根据需要在两边各留下宽为a米、b米的两条小路,其余部分种植花草,求种植花草部分的面积.(1) 你是怎样列式表示种植花草部分的面积的?是否有不同的表示方法?其中包含了什么运算?w w w .x k b 1.c o m方法一:可以先表示出种植花草部分的长与宽,由此得到种植花草部分面积为方法二:可以用总面积减去两条小路的面积,得到种植花草部分面积为由上面的探索,我们得到了上面等式从左到右运用了乘法分配律,将单项式乘以多项式转化为单项式乘以单项式单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项再把所得的积相加例1 计算:(1) (2)练习:1判断题:(1) 3a3·5a3=15a3 ( ) (2) ( )(3) ( ) 来源:学+科+网Z+X+X+K(4) x2(2y2xy)=2xy2x3y ( )2计算题:(1) (2) (3) (4) 3x(yxyz)(5) 3x2(yxy2x2) (6) 2ab(a2bc)来源:Z§xx§k.Com(7) (x3)22x3x3x(2x21) (8) xn(2xn+23xn-1+1) 拓展:3已知有理数a、b、c满足 |ab3|+(b+1)2+|c1|=0,求(3ab)·(a2c6b2c)的值。4已知:2x·(xn+2)=2xn+14,求x的值。5若a3(3an2am+4ak)=3a92a6+4a4,求3k2(n3mk+2km2)的值。回顾小结:单项式和多项式相乘,就是根据分配律用单项式去多乘多项式的每一项,再把所得的积相加。1.4 整式的乘法第3课时 多项式与多项式相乘一、学习目标1理解多项式乘法的法则,并会进行多项式乘法的运算二、学习重点:多项式乘法的运算三、学习难点:探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“符号”的问题(一)预习准备(1)预习书p18-19(2)思考:如何避免“漏项”?x k b 1 . c o m(3)预习作业:(1) (2)(3) (4)(5) (6)(7) (8)(9) (10)(二)学习过程:x k b 1 . c o m 如图,计算此长方形的面积有几种方法?如何计算? 方法1:S方法2:S方法3:S方法4:S由此得到: (m+b)(a+n) =运用乘法分配律进行解释,请将其中的一个多项式看作一个整体,再运用单项式与多项式相乘的方法进行计算(把(a+n)看作一个整体)(m+b)(a+n)多项式与多项式相乘:先用一个乘以另一个多项式的,再把所得的积例1 计算: 注意:(1)用一个多项式的每一项依次去乘另一个多项式的每一项,不要漏乘,在没有合并同类项之前,两个多项式相乘展开后的项数应是原来两个多项式项数之积。 (2)多项式里的每一项都包含前面的符号,两项相乘时先判断积的符号,再写成代数和形式。 (3)展开后若有同类项必须合并,化成最简形式。例2 计算:(2)练习:(1) (2) (3)新*课*标*第*一*网w w w .x k b 1.c o m(4) (5)(6)1 则m=_ , n=_2若 ,则k的值为( ) (A) a+b (B) ab (C)ab (D)ba3已知 则a=_ b=_拓展:4在与的积中不含与项,求P、q的值回顾小结:多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。1.5 平方差公式一探索公式1、沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积2、计算下列各式的积(1)、 (2)、 = =(3)、 (4)、 = =观察算式结构,你发现了什么规律?计算结果后,你又发现了什么规律?上面四个算式中每个因式都是 项.它们都是两个数的 与 的 .(填“和”“差”“积”)根据大家作出的结果,你能猜想(a+b)(ab)的结果是多少吗?为了验证大家猜想的结果,我们再计算:( a+b)(ab)= = .得出: 。其中a、b表示任意数,也可以表示任意的单项式、多项式,这个公式叫做整式乘法的 公式,用语言叙述为 。1、判断正误:(1)(4x+3b)(4x-3b)4x2-3b2;( ) (2)(4x+3b)(4x-3b)16x2-9;( )2、判断下列式子是否可用平方差公式 (1)(-a+b)(a+b)( ) (2) (-2a+b)(-2a-b) ( )(3) (-a+b)(a-b)( ) (4) (a+b)(a-c) ( )3、参照平方差公式“(a+b)(ab)= a2b2”填空(1)(t+s)(t-s)= (2) (3m+2n)(3m-2n)= (3) (1+n)(1-n)= (4) (10+5)(10-5) 二、自主探究例1:运用平方差公式计算(1) (2) (3)例2:计算(1) (2)达标练习1、下列各式计算的对不对?如果不对,应怎样改正?(1) (x+2)(x-2)=x2-2 (2) (-3a-2)(3a-2)=9a2-4(3) (x+5)(3x-5)=3x2-25 (4) (2ab-c)(c+2ab)=4a2b2-c22、用平方差公式计算:1)(3x+2)(3x-2) 2)(b+2a)(2a-b)3)(-x+2y)(-x-2y) 4)(-m+n)(m+n)5) (-0.3x+y)(y+0.3x) 6) (-a-b)(a-b) 3、利用简便方法计算:(1) 102×98 (2) 20012 -19992 (1) (x+y)(x2+y2)(x4+y4)(x-y) (2) (a+2b+c)(a+2b-c) (3) (+5)2 -(-5)2探索:1002-992+982-972+962-952+22-12的值。1.6 完全平方公式第1课时 完全平方公式一、探索公式问题.利用多项式乘多项式法则,计算下列各式,你又能发现什么规律?(1)_.(2)_.(3) _ _.(4) =_.(5) =_ .(6) =_. 问题.上述六个算式有什么特点?结果又有什么特点?问题3尝试用你在问题中发现的规律,直接写出和的结果.即: 问题4:问题3中得的等式中,等号左边是 ,等号的右边: ,把这个公式叫做(乘法的)完全平方公式问题5. 得到结论: (1)用文字叙述: (3)完全平方公式的结构特征: 问题6:请思考如何用图.和图.中的面积说明完全平方公式吗?问题8. 找出完全平方公式与平方差公式结构上的差异二、例题分析例:判断正误:对的画“”,错的画“×”,并改正过来.(1)(a+b)2=a2+b2; ( )(2)(a-b)2=a2-b2; ( )(3)(a+b)2=(-a-b)2; ( )(4)(a-b)2=(b-a)2. (