数系扩充和复数概念.ppt
关于数系的扩充和复数的概念第一张,PPT共二十四页,创作于2022年6月一、创设情景,探究问题一、创设情景,探究问题联系从自然数系自然数系到实数系实数系的扩充过程,你能设想一种方法,使这个方程有解吗?第二张,PPT共二十四页,创作于2022年6月2022/10/18自然数整数有理数实数负整数分数无理数回忆数的扩充回忆数的扩充第三张,PPT共二十四页,创作于2022年6月1 1、在原有数集中某种运算、在原有数集中某种运算不能进行不能进行想一想想一想:数系为什么要扩充?在扩充过程中什么是保持不变的?2 2、原数集中的、原数集中的运算规则运算规则在新数集中得在新数集中得到了保留到了保留第四张,PPT共二十四页,创作于2022年6月思考?思考?上述方程在实数中无解,联系从自然数系自然数系到实数实数系系的扩充过程,你能设想一种方法,使这个方程有解?二、合情推理,类比扩充二、合情推理,类比扩充第五张,PPT共二十四页,创作于2022年6月2022/10/18 为了解决负数开平方负数开平方问题,数学家数学家大胆引入一个新数 i i,把 i 叫做虚数单位,并且规定:叫做虚数单位,并且规定:问题解决问题解决:(2)实数可以与i i 进行四则运算,在进行四则运算时在进行四则运算时,原有的加法与乘法的运算律(包括交换律、结合律包括交换律、结合律和分配律)仍然成立.(1)1;注:虚数单位i是瑞士数学家欧拉最早引用的,它取自imaginary(想象的,假想的)一词的词头.第六张,PPT共二十四页,创作于2022年6月 由它所创造的复变函数理论,成为解决电磁理论,航空理论,原子能及核物理等尖端科学的数学工具.实际应用实际应用第七张,PPT共二十四页,创作于2022年6月2022/10/181 1、下列这些数与虚数单位、下列这些数与虚数单位i i经过了哪些运算?经过了哪些运算?说一说2 2、这些数的形式有什么共同点?你能用一个式、这些数的形式有什么共同点?你能用一个式子来表示这些数吗?子来表示这些数吗?第八张,PPT共二十四页,创作于2022年6月2022/10/18定义:定义:把形如把形如a+ba+bi i的数叫做的数叫做复数复数(a,b a,b 是实数)是实数)其中i叫做虚数单位 复数全体组成的集合叫复数全体组成的集合叫复数集复数集,记作,记作C C1、复数的概念第九张,PPT共二十四页,创作于2022年6月2022/10/18自然数整数有理数实数?负整数分数无理数数数 系系 的的 扩扩 充充复数虚数第十张,PPT共二十四页,创作于2022年6月2022/10/18虚数单位实部虚部b2、复数代数形式注:对于复数 以后不作特殊说明,都有第十一张,PPT共二十四页,创作于2022年6月2022/10/18第十二张,PPT共二十四页,创作于2022年6月2022/10/18观察下列复数,你有什么发现?纯虚数实数虚数=-1第十三张,PPT共二十四页,创作于2022年6月2022/10/181、复数、复数z=a+bi3、复数的分类当b=0时,z是实数;当b0时,z是虚数;当a=0且b0时,z是纯虚数;当a=0且b=0时,z是0 i i不存在不存在i i要存在要存在只有只有i i第十四张,PPT共二十四页,创作于2022年6月2022/10/182、复数复数z=a+bi3、即时训练 若m+(m-1)i为实数,则m=()若x+(2x-1)i为纯虚数,则x=()第十五张,PPT共二十四页,创作于2022年6月2022/10/18 复数集与实数集、虚数集、纯虚数集复数集与实数集、虚数集、纯虚数集之间有什么关系?之间有什么关系?想一想想一想虚数集纯虚数集实数集复复数数集集由上可知,实数集R时复数集C的真子集。第十六张,PPT共二十四页,创作于2022年6月2022/10/18如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.即4、复数相等注:注:两个两个虚数虚数不能比较大小不能比较大小,只能由定义判断它们相等或不只能由定义判断它们相等或不相等相等。第十七张,PPT共二十四页,创作于2022年6月2022/10/181.1.若若2 2-3 3i i=a a-3 3i i,求求 实实 数数a a的的 值值;2 2.若若8 8+5 5i i=8 8+b bi i,求求实实数数b b的的值值;3 3.若若4 4+b bi i=a a-2 2i i,求求实实数数a a,b b的的值值。即时训练:即时训练:第十八张,PPT共二十四页,创作于2022年6月2022/10/18虚数例1、完成下列表格(分类一栏填完成下列表格(分类一栏填实数、虚数或纯实数、虚数或纯虚数虚数)1-3虚数00实数02纯虚数-10实数 三、典例分析,巩固提升三、典例分析,巩固提升第十九张,PPT共二十四页,创作于2022年6月2022/10/18例例2 2、实数实数m m取什么值时,复数取什么值时,复数 是是 (1 1)实数)实数 (2 2)虚数)虚数 (3 3)纯虚数)纯虚数解解:(:(1)当当 ,即,即 时,复数时,复数z 是实数是实数(2)当当 ,即,即 时,复数时,复数z是虚数是虚数(3)当当 ,且,且 ,即,即 时,复时,复 数数 z 是纯虚数是纯虚数第二十张,PPT共二十四页,创作于2022年6月2022/10/18解:根据复数相等的定义,得方程组得例例例例3 3、已知 ,其中其中 ,求 与 .第二十一张,PPT共二十四页,创作于2022年6月四、当堂检测四、当堂检测1.以 的虚部为实部,以 的实部为虚部的复数是()A.-2+3i B.3-3i C.-3+3i D.3+3i2.若复数 是纯虚数,则实数 的值为()3.复数 与复数 相等,则实数 的值为()。第二十二张,PPT共二十四页,创作于2022年6月2022/10/18虚数的引入虚数的引入复复 数数 z=a+bi(a,b R)复数的分类复数的分类当当b=0时时z为实数为实数;当当b 0时时z为虚数;为虚数;当当b 0且且a=0时时z为纯虚数为纯虚数.复数的相等复数的相等a+bi=c+di(a,b,c,d R)a=cb=d五、课堂小结五、课堂小结第二十三张,PPT共二十四页,创作于2022年6月2022/10/18感感谢谢大大家家观观看看第二十四张,PPT共二十四页,创作于2022年6月