欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    八班级上册数学教案.docx

    • 资源ID:51466571       资源大小:15.75KB        全文页数:10页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    八班级上册数学教案.docx

    八班级上册数学教案 三角形是一种最基本的几何图形,是熟悉其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,一起看看八班级上册数学教案!欢迎查阅! 八班级上册数学教案1 一、内容和内容解析 1.内容 三角形中相关元素的概念、按边分类及三角形的三边关系. 2.内容解析 三角形是一种最基本的几何图形,是熟悉其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使同学对三角形的有关学问有更为深刻的理解. 本节课的教学重点:三角形中的相关概念和三角形三边关系. 本节课的教学难点:三角形的三边关系. 二、目标和目标解析 1.教学目标 (1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素. (2)理解并且敏捷应用三角形三边关系. 2.教学目标解析 (1)结合详细图形,识三角形的概念及其基本元素. (2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类. (3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题. 三、教学问题诊断分析 在探究三角形三边关系的过程中,让同学经受观看、探究、推理、沟通等活动过程,培育同学的和推理力量和合作学习的精神. 四、教学过程设计 1.创设情境,提出问题 问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义. 师生活动:先让同学分组争论,然后各小组派代表发言,针对同学下的定义,给出各种图形反例,如下图,指出其不完整性,加深同学对三角形概念的理解. 【设计意图】三角形概念的获得,要让同学经受其描述的过程,借此培育同学的语言表述力量,加深同学对三角形概念的理解. 2.抽象概括,形成概念 动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义. 师生活动: 三角形的定义:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形. 【设计意图】让同学体会由抽象到详细的过程,培育同学的语言表述力量. 补充说明:要求同学学会三角形、三角形的顶点、边、角的概念以及几何表达方法. 师生活动:结合详细图形,老师引导同学分析,让同学学会由文字语言向几何语言的过渡. 【设计意图】进一步加深同学对三角形中相关元素的认知,并进一步熟识几何语言在学习中的应用. 3.概念辨析,应用巩固 如图,不重复,且不遗漏地识别全部三角形,并用符号语言表示出来. 1.以AB为一边的三角形有哪些? 2.以D为一个内角的三角形有哪些? 3.以E为一个顶点的三角形有哪些? 4.说出BCD的三个角. 师生活动:引导同学从概念动身进行思索,加深同学对三角形中相关元素概念的理解. 4.拓广延长,探究分类 我们知道,根据三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,假如要根据边的大小关系对三角形进行分类,又应当如何分呢?小组之间同学进行沟通并说说你们的想法. 师生活动:通过争论,同学类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导同学了解等腰三角形与等边三角形的联系,强化同学对三角形按边分类的理解. 八班级上册数学教案2 教学目标 1.等腰三角形的概念. 2.等腰三角形的性质. 3.等腰三角形的概念及性质的应用. 教学重点: 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用. 教学难点:等腰三角形三线合一的性质的理解及其应用. 教学过程 .提出问题,创设情境 在前面的学习中,我们熟悉了轴对称图形,探究了轴对称的性质,并且能够作出一个简洁平面图形关于某始终线的轴对称图形,还能够通过轴对称变换来设计一些漂亮的图案.这节课我们就是从轴对称的角度来熟悉一些我们熟识的几何图形.来讨论:三角形是轴对称图形吗?什么样的三角形是轴对称图形? 有的三角形是轴对称图形,有的三角形不是. 问题:那什么样的三角形是轴对称图形? 满意轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形. 我们这节课就来熟悉一种成轴对称图形的三角形等腰三角形. .导入新课: 要求同学通过自己的思索来做一个等腰三角形. 作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形. 等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. 思索: 1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系? 3.顶角的平分线所在的直线是等腰三角形的对称轴吗? 4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢? 结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.由于等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线. 要求同学把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. 沿等腰三角形的顶角的平分线对折,发觉它两旁的部分相互重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. 由此可以得到等腰三角形的性质: 1.等腰三角形的两个底角相等(简写成“等边对等角”). 2.等腰三角形的顶角平分线,底边上的中线、底边上的高相互重合(通常称作“三线合一”). 由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). 如右图,在ABC中,AB=AC,作底边BC的中线AD,由于 所以BADCAD(SSS). 所以B=C. 如右图,在ABC中,AB=AC,作顶角BAC的角平分线AD,由于 所以BADCAD. 所以BD=CD,BDA=CDA= BDC=90°. 例1如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD, 求:ABC各角的度数. 分析:依据等边对等角的性质,我们可以得到 A=ABD,ABC=C=BDC, 再由BDC=A+ABD,就可得到ABC=C=BDC=2A. 再由三角形内角和为180°,就可求出ABC的三个内角. 把A设为x的话,那么ABC、C都可以用x来表示,这样过程就更简捷. 解:由于AB=AC,BD=BC=AD, 所以ABC=C=BDC. A=ABD(等边对等角). 设A=x,则 BDC=A+ABD=2x, 从而ABC=C=BDC=2x. 于是在ABC中,有 A+ABC+C=x+2x+2x=180°, 解得x=36°. 在ABC中,A=35°,ABC=C=72°. 师下面我们通过练习来巩固这节课所学的学问. .随堂练习:1.课本P51练习 1、2、3. 2.阅读课本P49P51,然后小结. .课时小结 这节课我们主要探讨了等腰三角形的性质,并对性质作了简洁的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高. 我们通过这节课的学习,首先就是要理解并把握这些性质,并且能够敏捷应用它们. .作业: 课本P56习题12.3第1、2、3、4题. 板书设计 12.3.1.1 等腰三角形 一、设计方案作出一个等腰三角形 二、等腰三角形性质: 1.等边对等角 2.三线合一 八班级上册数学教案3 教学目标 1、 理解并把握等腰三角形的判定定理及推论 2、 能利用其性质与判定证明线段或角的相等关系. 教学重点: 等腰三角形的判定定理及推论的运用 教学难点: 正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系. 教学过程: 一、复习等腰三角形的性质 二、新授: I提出问题,创设情境 出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得ACB为30°,这时,地质专家测得AC的长度就可知河流宽度. 同学们很想知道,这样估测河流宽度的依据是什么?带着这个问题,引导同学学习“等腰三角形的判定”. II引入新课 1.由性质定理的题设和结论的变化,引出讨论的内容在ABC中,苦B=C,则AB= AC吗? 作一个两个角相等的三角形,然后观看两等角所对的边有什么关系? 2.引导同学依据图形,写出已知、求证. 2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称). 强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”. 4.引导同学说出引例中地质专家的测量方法的依据. 八班级上册数学教案

    注意事项

    本文(八班级上册数学教案.docx)为本站会员(0****3)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开