欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    初一上册数学学问点总结人教版2022.docx

    • 资源ID:51495969       资源大小:16.17KB        全文页数:11页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    初一上册数学学问点总结人教版2022.docx

    初一上册数学学问点总结人教版2022 数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。下面是我为大家整理的有关初一上册数学学问点总结人教版,盼望对你们有关心! 初一上册数学学问点总结人教版 正数和负数 正数和负数的概念 负数:比0小的数正数:比0大的数0既不是正数,也不是负数 留意:字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(假如出推断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简洁推断) 正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2.具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8表示为:+8;零下8表示为:-8 3.0表示的意义 0表示“没有”,如教室里有0个人,就是说教室里没有人; 0是正数和负数的分界线,0既不是正数,也不是负数。如: (3)0表示一个准确的量。如:0以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。 有理数 1.有理数的概念 正整数、0、负整数统称为整数(0和正整数统称为自然数) 正分数和负分数统称为分数 正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。 理解:只有能化成分数的数才是有理数。是无限不循环小数,不能写成分数形式,不是有理数。有限小数和无限循环小数都可化成分数,都是有理数。3,整数也能化成分数,也是有理数 留意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8?也是偶数,-1,-3,-5?也是奇数。 2.有理数的分类 按有理数的意义分类按正、负来分正整数 整数0正有理数正分数 有理数有理数0(0不能忽视) 负整数 分数负有理数负分数 总结:正整数、0统称为非负整数(也叫自然数) 负整数、0统称为非正整数 正有理数、0统称为非负有理数 负有理数、0统称为非正有理数 数轴 数轴的概念 规定了原点,正方向,单位长度的直线叫做数轴。 留意:数轴是一条向两端无限延长的直线;原点、正方向、单位长度是数轴的三要素,三者缺一不 可;同一数轴上的单位长度要统一;数轴的三要素都是依据实际需要规定的。 2.数轴上的点与有理数的关系 全部的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。 全部的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点不是有理数) 3.利用数轴表示两数大小 在数轴上数的大小比较,右边的数总比左边的数大; 正数都大于0,负数都小于0,正数大于负数; 两个负数比较,距离原点远的数比距离原点近的数小。 4.数轴上特别的(小)数 最小的自然数是0,无的自然数; 最小的正整数是1,无的正整数; 的负整数是-1,无最小的负整数 5.a可以表示什么数 a0表示a是正数;反之,a是正数,则a0; a0表示a是负数;反之,a是负数,则a0 a=0表示a是0;反之,a是0,,则a=0 相反数 相反数 只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。 留意:相反数是成对出现的;相反数只有符号不同,若一个为正,则另一个为负; 0的相反数是它本身;相反数为本身的数是0。 2.相反数的性质与判定 任何数都有相反数,且只有一个; 0的相反数是0; 互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0 3.相反数的几何意义 在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。 4.相反数的求法 求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5); 求多个数的和或差的相反数时,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b); 求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化 简得5) 5.相反数的表示方法 一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。 当a0时,-a0(正数的相反数是负数) 当a0时,-a0(负数的相反数是正数) 当a=0时,-a=0,(0的相反数是0) 肯定值 肯定值的几何定义 一般地,数轴上表示数a的点与原点的距离叫做a的肯定值,记作|a|。 2.肯定值的代数定义 一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0. 可用字母表示为: 假如a0,那么|a|=a;假如a0,那么|a|=-a;假如a=0,那么|a|=0。 可归纳为:a0,|a|=a(非负数的肯定值等于本身;肯定值等于本身的数是非负数。)a0,|a|=-a(非正数的肯定值等于其相反数;肯定值等于其相反数的数是非正数。)经典考题 如数轴所示,化简下列各数 |a|,|b|,|c|,|a-b|,|a-c|,|b+c| 解:由题知道,由于a0,b0,c0,a-b0,a-c0,b+c0, 所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c 3.肯定值的性质 任何一个有理数的肯定值都是非负数,也就是说肯定值具有非负性。所以,a取任何有理数,都有|a|0。即0的肯定值是0;肯定值是0的数是0.即:a=0|a|=0; 一个数的肯定值是非负数,肯定值最小的数是0.即:|a|0; 任何数的肯定值都不小于原数。即:|a|a; 肯定值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a0),则x=±a; 互为相反数的两数的肯定值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|; 肯定值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b; 若几个数的肯定值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。 (非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0) 经典考题 已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值 解:由于|a+3|0,|2b-2|0,|c-1|0,且|a+3|+|2b-2|+|c-1|=0 所以|a+3|=0,|2b-2|=0,|c-1|=0 即a=-3,b=1,c=1 所以a+b+c=-3+1+1=-1 4.有理数大小的比较 利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小; 利用肯定值比较两个负数的大小:两个负数比较大小,肯定值大的反而小;异号两数比较大小,正数 大于负数。 5.肯定值的化简 当a0时,|a|=a;当a0时,|a|=-a 6.已知一个数的肯定值,求这个数 一个数a的肯定值就是数轴上表示数a的点到原点的距离,一般地,肯定值为同一个正数的有理数有两个,它们互为相反数,肯定值为0的数是0,没有肯定值为负数的数。如:|a|=5,则a=土5 有理数的加减法 1.有理数的加法法则 同号两数相加,取相同的符号,并把肯定值相加; 肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值;互为相反数的两数相加,和为零; 一个数与零相加,仍得这个数。 2.有理数加法的运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 在运用运算律时,肯定要依据需要敏捷运用,以达到化简的目的,通常有下列规律: 互为相反数的两个数先相加“相反数结合法”; 符号相同的两个数先相加“同号结合法”; 分母相同的数先相加“同分母结合法”; 几个数相加得到整数,先相加“凑整法”; 整数与整数、小数与小数相加“同形结合法”。 3.加法性质 一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即: 当b0时,a+ba当b0时,a+ba当b=0时,a+b=a p= 4.有理数减法法则 减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。 5.有理数加减法统一成加法的意义 在有理数加减法混合运算中,依据有理数减法法则,可以将减法转化成加法后,再根据加法法则进行计算。 在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5. 和式的读法:按这个式子表示的意义读作“负8、负7、负6、正5的和” 按运算意义读作“负8减7减6加5” 6.有理数加减混合运算中运用结合律时的一些技巧: .把符号相同的加数相结合(同号结合法) (-33)-(-18)+(-15)-(+1)+(+23) 原式=-33+(+18)+(-15)+(-1)+(+23)(将减法转换成加法) =-33+18-15-1+23(省略加号和括号) =(-33-15-1)+(18+23)(把符号相同的加数相结合) =-49+41(运用加法法则一进行运算) =-8(运用加法法则二进行运算) .把和为整数的加数相结合(凑整法) (+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8) 原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)(将减法转换成加法) =6.6-5.2+3.8-2.6-4.8(省略加号和括号) =(6.6-2.6)+(-5.2-4.8)+3.8(把和为整数的加数相结合) =4-10+3.8(运用加法法则进行运算) =7.8-10(把符号相同的加数相结合,并进行运算)=-2.2(得出结论) .把分母相同或便于通分的加数相结合(同分母结合法)313217-+-+-524528 321137原式=(-)+(-+)+(+-)552248 1=-1+0-8 1=-18- .既有小数又有分数的运算要统一后再结合(先统一后结合)312)+(-3)-(-10)-(+1.25)483 13121原式=(+)+(+3)+(-3)+(+10)+(-1)84834 13121=+3-3+10-184834 31112=(3-1)+(-3)+1044883 12=2-3+1023 1=-3+136 1=106(+0.125)-(-3 .把带分数拆分后再结合(先拆分后结合)-31617+10-12+45112215 初一上册数学学问点总结人教版2022

    注意事项

    本文(初一上册数学学问点总结人教版2022.docx)为本站会员(0****3)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开