北师大版九班级下册数学学问点.docx
北师大版九班级下册数学学问点 数学演算题的特点就在于:解题方法虽然不同,但最终的答案肯定只有一个,只要演算正确,就可殊途同归。接下来我在这里给大家共享一些关于北师大版九班级下册数学学问点,供大家学习和参考,盼望对大家有所关心。 北师大版九班级下册数学学问点 1 二次函数及其图像 二次函数(quadratic function)是指未知数的次数为二次的多项式函数。二次函数可以表示为f(x)=ax2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。 一般的,自变量x和因变量y之间存在如下关系: 一般式 y=ax2;+bx+c(a0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b2)/4a) ; 顶点式 y=a(x+m)2+k(a0,a、m、k为常数)或y=a(x-h)2+k(a0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式; 交点式 y=a(x-x1)(x-x2) 仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线 ; 重要概念:a,b,c为常数,a0,且a打算函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。a的肯定值还可以打算开口大小,a的肯定值越大开口就越小,a的肯定值越小开口就越大。 牛顿插值公式(已知三点求函数解析式) y=(y3(x-x1)(x-x2)/(x3-x1)(x3-x2)+(y2(x-x1)(x-x3)/(x2-x1)(x2-x3)+(y1(x-x2)(x-x3)/(x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1x2) (y1为截距) 求根公式 二次函数表达式的右边通常为二次三项式。 求根公式 x是自变量,y是x的二次函数 x1,x2=-b±(b2-4ac)/2a (即一元二次方程求根公式)(如右图) 求根的方法还有因式分解法和配方法 在平面直角坐标系中作出二次函数y=2x的平方的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。 不同的二次函数图像 假如所画图形精确无误,那么二次函数将是由一般式平移得到的。 留意:草图要有 1本身图像,旁边注明函数。 2画出对称轴,并注明X=什么 3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质 轴对称 1.抛物线是轴对称图形。对称轴为直线x = -b/2a。 对称轴与抛物线的交点为抛物线的顶点P。 特殊地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 顶点 2.抛物线有一个顶点P,坐标为P ( -b/2a ,4ac-b2;)/4a ) 当-b/2a=0时,P在y轴上;当= b2;-4ac=0时,P在x轴上。 开口 3.二次项系数a打算抛物线的开口方向和大小。 当a0时,抛物线向上开口;当a0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 打算对称轴位置的因素 4.一次项系数b和二次项系数a共同打算对称轴的位置。 当a与b同号时(即ab0),对称轴在y轴左; 由于若对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要大于0,所以a、b要同号 当a与b异号时(即ab0),对称轴在y轴右。由于对称轴在右边则对称轴要大于0,也就是- b/2a0, 所以b/2a要小于0,所以a、b要异号 可简洁记忆为左同右异,即当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab 0 ),对称轴在y轴右。 事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。 打算抛物线与y轴交点的因素 5.常数项c打算抛物线与y轴交点。 抛物线与y轴交于(0,c) 抛物线与x轴交点个数 6.抛物线与x轴交点个数 = b2-4ac0时,抛物线与x轴有2个交点。 = b2-4ac=0时,抛物线与x轴有1个交点。 _ = b2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±b2-4ac 的值的相反数,乘上虚数i,整个式子除以2a) 当a0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在x|x-b/2a上是减函数,在 x|x-b/2a上是增函数;抛物线的开口向上;函数的值域是y|y4ac-b2/4a相反不变 当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax2+c(a0) 特别值的形式 7.特别值的形式 当x=1时 y=a+b+c 当x=-1时 y=a-b+c 当x=2时 y=4a+2b+c 当x=-2时 y=4a-2b+c 二次函数的性质 8.定义域:R 值域:(对应解析式,且只争论a大于0的状况,a小于0的状况请读者自行推断)(4ac-b2)/4a, 正无穷);t,正无穷) 奇偶性:当b=0时为偶函数,当b0时为非奇非偶函数。 周期性:无 解析式: y=ax2+bx+c一般式 a0 a0,则抛物线开口朝上;a0,则抛物线开口朝下; 极值点:(-b/2a,(4ac-b2)/4a); =b2-4ac, 0,图象与x轴交于两点: (-b-/2a,0)和(-b+/2a,0); =0,图象与x轴交于一点: (-b/2a,0); 0,图象与x轴无交点; y=a(x-h)2+k顶点式 此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b2)/4a; y=a(x-x1)(x-x2)交点式(双根式)(a0) 对称轴X=(X1+X2)/2 当a0 且X(X1+X2)/2时,Y随X的增大而增大,当a0且X(X1+X2)/2时Y随X 的增大而减小 此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连 用)。 交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。 26.2 用函数观点看一元二次方程 1. 假如抛物线 与x轴有公共点,公共点的横坐标是 ,那么当 时,函数的值是0,因此 就是方程的一个根。 2. 二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种状况:没有实数根,有两个相等的实数根,有两个不等的实数根。 26.3 实际问题与二次函数 在日常生活、生产和科研中,求使材料最省、时间最少、效率等问题,有些可归结为求二次函数的值或最小值。 北师大版九班级数学学习方法 学会看题 高中比学校有更多的相关材料。高考是全.关注的问题。因此,在高中的实践尤其多,一些同学购买更多的材料。因此,如何利用主题来把握我们学习的学问,扩大我们所学的学问是学习的关键。我认为我们应当看更多的话题,更多的思索,看看解决材料中问题的方法,思索方法中的缘由,这样我们就可以从更多的方法中学习。 有许多方法来消化它们。因此,我们将不得不选择去做这个问题,用一半的努力达到两倍的结果。我建议每天练习一次,每周做一组完整的试题,看2到3组试题,从中找出这段时间数学学习的关键学问,这些是我们常用来解决问题的方法,以及可以用来优化解题的方法。 课后巩固 许多同学在课后的学习过程中不注意巩固,只是觉得课堂上的一些学问就足够了,其实这是错误的。高中数学学问丰富,不像学校数学那么简洁,却有着丰富的内涵。假如它不能进一步挖掘,那么它只是把握这些学问的表面。因此,我不知道如何理解,也不能使用这些学问时,我做我的练习。 做练习是必要的,但有些同学只是做练习,而不是巩固这些学问,把学问扩展到做练习,常常是在练习完成后完成练习。这和中学问题没有什么区分。事实上,我们也应当把在这个练习中使用的学问联系起来,这样我们才能理解正在使用的学问,并且能够把握更多的学问。也可以发觉学问点是关键,也可以发觉如何链接相关学问的难题。 北师大版九班级数学学习技巧 养成良好的学习数学习惯 多质疑、勤思索、好动手、重归纳、留意应用。同学在学习数学的过程中,要把老师所传授的学问翻译成为自己的特别语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、用心上课、准时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 准时了解、把握常用的数学思想和方法 中学数学学习要重点把握的的数学思想有以上几个:集合与对应思想,分类争论思想,数形结合思想,运动思想,转化思想,变换思想。 有了数学思想以后,还要把握详细的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在详细的方法中,常用的有:观看与试验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特别,有限与无限,抽象与概括等。 逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去猎取的。学习数学肯定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特殊是对概念理解的不同侧面和数学规律,老师在课堂中拓展的课外学问。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 要建立数学纠错本。把平常简单出现错误的学问或推理记载下来,以防再 犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深化理解正确东西;能由果朔因把错误缘由弄个水落石出、以便对症下药;解答问题完整、推理严密。 北师大版九班级下册数学学问点