八班级下数学学问点提纲.docx
八班级下数学学问点提纲 数学解题思路和力量的培育主要在于课堂上,所以想要学好数学肯定要重视数学的学习效率和提前预习。只有提前预习才知道自己哪里不会,这样在课堂上才会留意力集中不走神。下面是我整理的八班级下数学学问点提纲,仅供参考,盼望能够关心到大家。 八班级下数学学问点提纲 一. 分解因式 1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. 2. 因式分解与整式乘法是互逆关系。因式分解与整式乘法的区分和联系: (1)整式乘法是把几个整式相乘,化为一个多项式; (2)因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法 1. 假如一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.如: ab+ac=a(b+c) 2. 概念内涵:(1)因式分解的最终结果应当是“积”;(2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的安排律,即: ma+mb-mc=m(a+b-c) 3. 易错点点评:(1)留意项的符号与幂指数是否搞错;(2)公因式是否提“洁净”; (3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法 1. 假如把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法. 2. 主要公式: 4. 运用公式法: (1)平方差公式: 应是二项式或视作二项式的多项式;二项式的每项(不含符号)都是一个单项式(或多项式)的平方;二项是异号. (2)完全平方公式:应是三项式;其中两项同号,且各为一整式的平方; 还有一项可正可负,且它是前两项幂的底数乘积的2倍. 5. 因式分解的思路与解题步骤: (1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最终结果必需是几个整式的乘积,否则不是因式分解; (5)因式分解的结果必需进行到每个因式在有理数范围内不能再分解为止. 初二数学重点学问 . 平行四边形 (1)平行四边形性质 1)平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形. 2)平行四边形的性质(包括边、角、对角线三方面) : 边:平行四边形的两组对边分别平行; 平行四边形的两组对边分别相等; 角:平行四边形的两组对角分别相等; 对角线:平行四边形的对角线相互平分. 【补充】平行四边形的邻角互补;平行四边形是中心对称图形,对称中心是对角线的交点. (2)平行四边形判定 1)平行四边形的判定(包括边、角、对角线三方面): 边:两组对边分别平行的四边形是平行四边形; 两组对边分别相等的四边形是平行四边形; 一组对边平行且相等的四边形是平行四边形; 角:两组对角分别相等的四边形是平行四边形; 对角线:对角线相互平分的四边形是平行四边形. 2)三角形中位线:连接三角形两边中点的线段叫做三角形的中位线. 3)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 4)平行线间的距离: 两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。两条平行线间的距离到处相等。 . 矩形 (1)矩形的性质 1)矩形的定义:有一个角是直角的平行四边形叫做矩形. 2)矩形的性质: 矩形具有平行四边形的全部性质; 矩形的四个角都是直角; 矩形的对角线相等; 矩形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线的交点. (2)矩形的判定 1)矩形的判定: 有一个角是直角的平行四边形是矩形; 对角线相等的平行四边形是矩形; 有三个角是直角的四边形是矩形. 2)证明一个四边形是矩形的步骤: 方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等; 方法二:若一个四边形中的直角较多,则可证三个角为直角. 3)直角三角形斜边中线定理:(如右图) 直角三角形斜边上的中线等于斜边的一半. . 菱形 (1)菱形的性质 1)菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2)菱形的性质: 菱形具有平行四边形的全部性质; 菱形的四条边都相等; 菱形的两条对角线相互垂直,并且每一条对角线平分一组对角; 菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点. 3)菱形的面积公式: 菱形的两条对角线的长分别为,则 (2)菱形的判定 1)菱形的判定: 有一组邻边相等的平行四边形是菱形; 对角线相互垂直的平行四边形是菱形; 四条边都相等的四边形是菱形. 2)证明一个四边形是菱形的步骤: 方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线相互垂直”; 方法二:直接证明“四条边相等”. . 正方形 (1)正方形的性质 1)正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形. 2)正方形的性质: 正方形具有平行四边形、矩形、菱形的全部性质,即正方形的四条边都相等;四个角都是直角;对角线相互垂直平分且相等,并且每条对角线平分一组对角. 3)正方形既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点是对称中心. (2)正方形的判定 1)正方形的判定: 有一组邻边相等且有一个角是直角的平行四边形是正方形; 有一组邻边相等的矩形是正方形; 对角线相互垂直的矩形是正方形; 有一个角是直角的菱形是正方形; 对角线相等的菱形是正方形; 对角线相互垂直平分且相等的四边形是正方形. 多做题是学好学校数学的关键 想要学好学校数学,就要多做数学题。只有同学把握了各种各样的题型,那么你对于学校数学的解题思路才能够了解,这样通过积累就会使自己的解题思路和思维丰富。在刚开头的时候,可以从最简洁的基础题入手,同学最好是以课本上的习题为主,肯定要将课本上的习题弄懂,这样打好基础,才会为接下来的做其他类型的题最好预备。然后在开头做一些课外的有难度的习题,目的是为了关心同学开拓自己的思路,提高自己分析力量。 建立数学思维方式 到了学校,数学出现了许多新的学问点,也是重点考点和关键难点,比如系统性的开头学习几何学问,首次引入函数的概念并求解一般的线性函数问题,这些对于学校生来说既是全新的,又是有肯定难度的。这就需要同学创新数学思维方式,紧跟教材进度和课堂进度,训练自己的数学思维尤其的几何图形的感觉,以及对函数的深刻理解。 八班级下数学学问点提纲