欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高一数学必修一学问点总结归纳五篇精选.docx

    • 资源ID:51539053       资源大小:15.63KB        全文页数:10页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高一数学必修一学问点总结归纳五篇精选.docx

    高一数学必修一学问点总结归纳五篇精选 对于许多刚上高中的同学们来说,高一数学必修一是噩梦一般的存在,其学问点特别的繁琐复杂,让同学们头疼不已。下面就是我给大家带来的高一数学必修一学问点总结,盼望能关心到大家! 高一数学必修一学问点总结1 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c (a,b,c为常数,a0,且a打算函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以打算开口大小,IaI越大开口就越小,IaI越小开口就越大.) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式 一般式:y=ax2+bx+c(a,b,c为常数,a0) 顶点式:y=a(x-h)2+k抛物线的顶点P(h,k) 交点式:y=a(x-x?)(x-x?)仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线 注:在3种形式的相互转化中,有如下关系: h=-b/2ak=(4ac-b2)/4ax?,x?=(-b±b2-4ac)/2a III.二次函数的图像 在平面直角坐标系中作出二次函数y=x2的图像,可以看出,二次函数的图像是一条抛物线。 IV.抛物线的性质 1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。 特殊地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P(-b/2a,(4ac-b2)/4a) 当-b/2a=0时,P在y轴上;当=b2-4ac=0时,P在x轴上。 3.二次项系数a打算抛物线的开口方向和大小。 当a0时,抛物线向上开口;当a0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 高一数学必修一学问点总结2 1、柱、锥、台、球的结构特征 (1)棱柱: 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形. (2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方. (3)棱台: 几何特征:上下底面是相像的平行多边形侧面是梯形侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成 几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面绽开图是一个矩形. (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成 几何特征:底面是一个圆;母线交于圆锥的顶点;侧面绽开图是一个扇形. (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面绽开图是一个弓形. (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径. 3、空间几何体的直观图斜二测画法 斜二测画法特点:原来与x轴平行的线段仍旧与x平行且长度不变; 原来与y轴平行的线段仍旧与y平行,长度为原来的一半. 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和. (2)特别几何体表面积公式(c为底面周长,h为高,为斜高,l为母线) (3)柱体、锥体、台体的体积公式 高一数学必修一学问点总结3 幂函数 定义: 形如y=xa(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域: 当a为不同的数值时,幂函数的定义域的不同状况如下:假如a为任意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需根据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。当x为不同的数值时,幂函数的值域的不同状况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域 性质: 对于a的取值为非零有理数,有必要分成几种状况来争论各自的特性: 首先我们知道假如a=p/q,q和p都是整数,则x(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是r,假如q是偶数,函数的定义域是0,+), 当指数n是负整数时,设a=-k,则x=1/(xk),明显x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排解了为0与负数两种可能,即对于x0,则a可以是任意实数; 排解了为0这种可能,即对于x0和x0的全部实数,q不能是偶数; 排解了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同状况如下: 假如a为任意实数,则函数的定义域为大于0的全部实数; 假如a为负数,则x确定不能为0,不过这时函数的定义域还必需依据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自状况. 可以看到: (1)全部的图形都通过(1,1)这点。 (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。 (6)明显幂函数。 高一数学必修一学问点总结4 1、函数零点的定义 (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。 (2)方程0)(xf有实根Û函数()yfx的图像与x轴有交点Û函数()yfx有零点。因此推断一个函数是否有零点,有几个零点,就是推断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点 若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。 若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()( 2、函数零点的判定 (1)零点存在性定理:假如函数)(xfy在区间,ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。 (2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定方法 代数法:函数)(xfy的零点Û0)(xf的根;(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。 (3)零点个数确定 0)(xfy有2个零点Û0)(xf有两个不等实根;0)(xfy有1个零点Û0)(xf有两个相等实根;0)(xfy无零点Û0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定. 3、二分法 (1)二分法的定义:对于在区间,ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤: 确定区间,ab,验证()()0fafb,给定精确度e; 求区间(,)ab的中点c;计算()fc; ()若()0fc,则c就是函数的零点; ()若()()0fafc,则令bc(此时零点0(,)xac);()若()()0fcfb,则令ac(此时零点0(,)xcb); 推断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复至步. 高一数学必修一学问点总结5 【基本初等函数】 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,假如,那么叫做的次方根(nthroot),其中1,且. 当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand). 当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。 留意:当是奇数时,当是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (二)指数函数及其性质 1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R. 留意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 高一数学必修一学问点总结归纳五篇精选

    注意事项

    本文(高一数学必修一学问点总结归纳五篇精选.docx)为本站会员(0****3)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开