八班级数学下册学问点.docx
八班级数学下册学问点 新的数学方法和概念,经常比解决数学问题本身更重要,接下来我在这里给大家共享一些关于八班级数学下册学问点,供大家学习和参考,盼望对大家有所关心。 八班级数学下册学问点 第一章一元一次不等式和一元一次不等式组 一、一般地,用符号“”(或“”),“”(或“”)连接的式子叫做不等式。 能使不等式成立的未知数的值,叫做不等式的解.不等式的解不,把全部满意不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式. 由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组 不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。 等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式. 二、不等式的基本 性质1.不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。) 性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变. 性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向转变.不等式的基本性质1、若ab,则a+cb+c;2、若ab,c0则acbc若c0,则ac 不等式的其他性质:反射性:若ab,则b传递性:若ab,且bc,则ac 三、解不等式的步骤: 1、去分母;2、去括号;3、移项合并同类项;4、系数化为1。四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。五、列一元一次不等式组解实际问题的一般步骤:(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(依据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。 六、常考题型: 1、求4x-67x-12的非负数解.2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围. 3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。 其次章分解因式 一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2±2ab+b2=(a±b)2二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形。 三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)全部这些因式的乘积即为公因式. 四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则依据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止. 五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.分解因式的方法:1、提公因式法。2、运用公式法。 八班级数学学习方法 把握数学学习实践阶段:在高中数学学习过程中,我们需要使用正确的学习方法,以及科学合理的学习规章。先生闻名的日本训练在米山国藏在他的数学精神、思想和方法,曾经说过,尤其是高阶段的数学学习数学,必需遵循“分层原则”和“循序渐进”的原则。与教学内容的第一周甚至是从基础开头,一周后的头几天,在教学难以提升。以及提升的困难进步一步一步,最好不要去追求所谓的“困难”除了(感爱好),不利于解决问题方法把握连续性。同时,依据时间和课程支配的长度适当的审查,只有这样才能记住和使用在长期学习数学学问,不要遗忘前面的学习。 八班级数学学习技巧 敢于表达自己的想法。在高中数学学习中,同学会遇到许多解决问题的技巧。或许这个方法对别人来说不是很熟识,你知道。那么你需要同学敢于表达自己的想法,这样你才能把握更多的技能。它也可以激发同学的学习爱好,假如一个班是满的。是老师在说话,课堂气氛很沉闷,同学的学习效率也很低。 八班级数学下册学问点