欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    第二章材料的热膨胀性能PPT讲稿.ppt

    • 资源ID:51795974       资源大小:959.50KB        全文页数:21页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第二章材料的热膨胀性能PPT讲稿.ppt

    第二章材料的热膨胀性能2022/10/191第1页,共21页,编辑于2022年,星期二2-1 热膨胀系数一、线膨胀系数设一物体在TK温度下的真实长度为l,当温度升高TK后,其长度变为l+l,则有下列关系式成立:这里为材料的线膨胀系数。一般来说并不是一个常数,而是随温度变化而改变。一般固体材料的=10-610-2K-1量级,合金和金属的=10-510-6K-1量级,陶瓷材料=10-510-6K-1。第2页,共21页,编辑于2022年,星期二二、体膨胀系数第3页,共21页,编辑于2022年,星期二2-2 固体材料热膨胀机理固体材料热膨胀的本质是点阵结构中的质点间的平均距离随温度升高而增大,这种增大是由于原子热振动造成的。在热容理论的推导过程中,近似认为晶格振动是一种简谐振动,那么随温度升高,会增大振幅,但却不会改变其平均平衡位置间的距离,即不会发生热膨胀,这样显然与实际结果不符。实际上原子的热振动并不是简谐振动,因为原子间的作用力不是一弹性力,即受力不对称,这可用下述的双原子模型加以解释。第4页,共21页,编辑于2022年,星期二无论从位(势)能曲线或力的曲线,均可解释热膨胀现象。由于温度升高,原子的热振动加剧,U上升,其平衡位置rro,并AB轨迹变化,温度越高,偏离程度越大,从而引起材料的热膨胀。结论:热膨胀来源于结论:热膨胀来源于原子的非简谐振动原子的非简谐振动第5页,共21页,编辑于2022年,星期二2-3 热膨胀和其他物理性能的关系一、热膨胀和结合能、熔点的关系 由上述的位能理论可知,热膨胀与位能曲线的形状密切相关。而位能曲线形状与质点间的结合力和熔点有关。结合能(力)越大,熔点越高,位能曲线变得深而窄,升高同样的温度T,质点的振幅增加得较少,平均平衡位置的位移量亦较少,因此热膨胀系数较小。格留奈申(Gruneisen)给出了固态金属膨胀的极限方程:第6页,共21页,编辑于2022年,星期二热膨胀与熔点的关系:P234 图5.26热膨胀与元素序数的关系:P234 图5.27热膨胀与纯金属材料硬度的关系:P235 表5.7第7页,共21页,编辑于2022年,星期二二、热膨胀与热容的关系显然,热容与热膨胀密切相关。如下图所示。热容晶格振动热膨胀第8页,共21页,编辑于2022年,星期二cP(cV)T曲线与T曲线极其相似,表明两者间的密切关系,当TD时,cP趋于定值,而却连续升高。这是由于空位等缺陷的增加对热膨胀系数的贡献。格留奈申从晶格振动的热容理论推导出立方晶系金属热膨胀系数和热熔间的关系式:第9页,共21页,编辑于2022年,星期二三、热膨胀与材料结构的关系对于相同组成的物质,由于结构不同,膨胀系数也不同。通常结构紧密的晶体,膨胀系数都较大;而类似于无定形的玻璃,则往往有较小的膨胀系数。对于非等轴晶系,各晶轴方向的膨胀系数不同。在某个方向上甚至出现负值。对于-锂霞石,甚至出现负的体积膨胀系数。例如,SiO2:多晶石英:=1210-6K-1石英玻璃:=0.510-6K-1铁素体:a=0.2861nm(常温)=14.510-6K-1奥氏体:a=0.35586-0.36034nm (C%=0.0-1.4%)=23.010-6K-1石墨:垂直于C轴方向(层间):=110-6K-1平行于C轴方向(层内):=2710-6K-1Al2TiO5:垂直于C轴方向(层间):=-2.610-6K-1平行于C轴方向(层内):=11.510-6K-1第10页,共21页,编辑于2022年,星期二1、多型性转变的影响属于一级相变,l或V有突变,产生明显变化,若相变为等温转变,则在转变点趋近于无穷大。2、有序无序转变属于二级相变,相变时体积无突变,但在相变温度区间有变化。第11页,共21页,编辑于2022年,星期二3、磁性转变属于二级相变,转变是在接近居里点的温度范围内进行,对于某些铁磁材料,在转变温度范围内,会出现明显的尖峰。这是由于自发磁化过程中产生的体积磁致伸缩效应引起的,在居里点附近,这种效应自动消失,因而产生突变。第12页,共21页,编辑于2022年,星期二四、合金化的影响1、固溶体合金绝大多数金属形成单相固溶体时,其膨胀系数介于组元的膨胀系数之间。如Cu-Au,Cu-Ni,Ag-Au等。在有些系统中膨胀系数并不主要决定于溶质元素的膨胀系数,而是决定于溶质元素的价数。如Ag-Cd,In,Sn,Sb。2、形成化合物一般来说,由于原子间相互作用的加强,导致其膨胀系数比固溶体有较大的下降。第13页,共21页,编辑于2022年,星期二3、多相材料及复合材料多相材料的膨胀系数取决于组成相的膨胀性能及组成相的体积相对量。并近似地符合直线相加定律:A+B=AVA+BVB若两相的膨胀性能差别特别大,则可用下式计算:C=m-A.Vd(m-d)式中:C-复合材料的膨胀系数,m、d-基体相和增强相的膨胀系数。Vd-增强相的体积百分数,A与单性常数有关的常数。第14页,共21页,编辑于2022年,星期二对于多相(复合)材料,当组成相的膨胀系数相差较大时,在冷却和加热过程中,由于不能靠塑性变形来协调,则有可能产生内应力,这种微观内应力的存在,会对材料的热膨胀产生牵制作用。若认为组成相为各向同性的,且微观内应力为正应力(拉、压),则有下列关系式:第15页,共21页,编辑于2022年,星期二对于复合体中不同相间或晶粒的不同方向上膨胀系数差别很大时,则内应力甚至会发展到使坯体产生内裂纹。由于微裂纹的存在,导致复合体出现热膨胀的滞后,或在较低温度下出现反常低的热膨胀系数。例如:石墨:单晶垂直于C轴=110-6K-1;平行于C轴=2710-6K-1。而多晶体在较低温度下=(1-3)10-6K-1。第16页,共21页,编辑于2022年,星期二五、材料设计中膨胀系数匹配性原则 对于多相复合材料,当组成相的膨胀系数差别较大时,会产生较大的内应力、甚至开裂。所以在进行材料设计时必须考虑膨胀性能的匹配。电子管生产:最常见的是金属与陶瓷(玻璃)的封接。为了封接得严密可靠,除了必须考虑陶瓷材料与焊料的结合性能外,还应该使陶瓷和金属的膨胀系数尽可能接近。陶瓷(日用、建筑)制品:陶瓷坯体与表面釉层的膨胀系数一般选择使釉的膨胀系数适当小于坯的膨胀系数。这样,在烧成后的冷却过程中,由于表面釉层的收缩比坯小,使釉层产生一个压应力,从而提高脆性材料的机械强度,同时,也抑制了釉层微裂纹的形成和发展,从而进一步提高强度。反之,则在釉层 中形成张应力,对强度不利,应力过大甚至引起釉层开裂。同样,釉的膨胀系数也不能太小,否则会使釉层剥落。第17页,共21页,编辑于2022年,星期二工艺美术陶瓷:一般情况与上述日用陶瓷一致,但对于某些特殊陶瓷恰好相反。复合材料:增强相与基体的膨胀系数一般相差较大,一般要对增强相进行表面预处理。预处理主要考虑:界面结合力、弹性匹配、膨胀系数匹配。梯度功能材料:ZrO2+Mo双金属控温装置、日光灯启辉器(双金属片)。第18页,共21页,编辑于2022年,星期二2-5 热膨胀的测量(P244)一、千分表简易膨胀仪二、光学膨胀仪三、差动变压器式膨胀仪第19页,共21页,编辑于2022年,星期二2-6 膨胀法在材料研究中的应用(P247)一、相变临界点(固态下)的测定二、膨胀系数的测定三、测定钢过冷奥氏体的转变(TTT、CCT曲线)P250-251 图5.49-5.50四、淬火钢的回火过程五、研究晶体缺陷第20页,共21页,编辑于2022年,星期二2-4 膨胀合金(P254)一、低膨胀合金二、定膨胀合金三、热双金属第21页,共21页,编辑于2022年,星期二

    注意事项

    本文(第二章材料的热膨胀性能PPT讲稿.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开