材料物理结构优秀PPT.ppt
材料物理结构你现在浏览的是第一页,共39页晶体结构晶体结构:原子规则排列,主要体现是原子排列具有周期原子规则排列,主要体现是原子排列具有周期性,或者称性,或者称长程有序长程有序。有此排列结构的材料为晶体。有此排列结构的材料为晶体。晶体中原子、分子规则排列的结果使晶体具有规则的几何外晶体中原子、分子规则排列的结果使晶体具有规则的几何外形,形,X射线衍射已证实这一结论。射线衍射已证实这一结论。非晶体结构非晶体结构:不具有长程有序。有此排列结构的材料为非不具有长程有序。有此排列结构的材料为非晶体。晶体。了解固体结构的意义了解固体结构的意义:固体中原子排列形式是研究固体固体中原子排列形式是研究固体材料宏观性质和各种微观过程的基础。材料宏观性质和各种微观过程的基础。晶体结构晶体结构固体的结构分为:固体的结构分为:非晶体结构非晶体结构 多晶体结构多晶体结构 1.1 晶体结构晶体结构你现在浏览的是第二页,共39页晶体内部结构概括为是由一些相同点在空间有规晶体内部结构概括为是由一些相同点在空间有规则作周期性无限分布,这些点的总体称为点阵。则作周期性无限分布,这些点的总体称为点阵。(布拉菲点阵)(布拉菲点阵)(该学说正确地反映了晶体内部结构长程有序特征,后来被(该学说正确地反映了晶体内部结构长程有序特征,后来被空间群理论充实发展为空间点阵学说,形成近代关于晶体几空间群理论充实发展为空间点阵学说,形成近代关于晶体几何结构的完备理论。)何结构的完备理论。)1.1.1 空空 间间 点点 阵阵一、布喇菲的空间点阵学说一、布喇菲的空间点阵学说你现在浏览的是第三页,共39页关于结点的说明:关于结点的说明:当晶体是由完全相同的一种原子组成,结点可以是原子本身位置。当晶体是由完全相同的一种原子组成,结点可以是原子本身位置。当晶体中含有数种原子,这数种原子构成基本结构单元(基元),当晶体中含有数种原子,这数种原子构成基本结构单元(基元),结点可以代表基元重心,原因是所有基元的重心都是结构中相同位结点可以代表基元重心,原因是所有基元的重心都是结构中相同位置,也可以代表基元中任意点子置,也可以代表基元中任意点子 结点示例图结点示例图1.点阵点阵空间点阵学说中所称的空间点阵学说中所称的点点,代表着结构中相同的位置,也,代表着结构中相同的位置,也为为结点结点,也可以代表原子周围相应点的位置。,也可以代表原子周围相应点的位置。你现在浏览的是第四页,共39页晶体由基元沿空间三个不同方向,各按一定的距离晶体由基元沿空间三个不同方向,各按一定的距离周期周期性性地平移而构成,地平移而构成,基元基元每一平移距离称为每一平移距离称为周期周期。在一定方向有着一定在一定方向有着一定周期周期,不同方向上,不同方向上周期周期一一 般不相同。般不相同。基元基元平移结果:平移结果:点阵点阵中每个结点周围情况都一样。中每个结点周围情况都一样。2.点阵学说概括了晶体结构的周期性点阵学说概括了晶体结构的周期性你现在浏览的是第五页,共39页3.晶格的形成晶格的形成通过点阵中的结点,可以作许多平行的直线族和平通过点阵中的结点,可以作许多平行的直线族和平行的晶面族,点阵成为一些网格行的晶面族,点阵成为一些网格-晶格。晶格。你现在浏览的是第六页,共39页 平行六面体平行六面体晶胞概念的引出:晶胞概念的引出:由于晶格晶格周期性,可取一个以结点结点为顶点,边长等于该方向上的周期周期的平行六面体作为重复单元,来概括晶格的特征。即每个方向不能是一个结点(或原子)本身,而是一即每个方向不能是一个结点(或原子)本身,而是一个结点个结点(或原子)加上周期长度为原子)加上周期长度为a的区域,其中的区域,其中a叫做叫做基矢基矢。这样的重复单元重复单元称为晶胞晶胞。你现在浏览的是第七页,共39页 晶胞(重复单元)的选取规则晶胞(重复单元)的选取规则 反映周期性特征:反映周期性特征:只需概括空间三个方向上的周期大小,原只需概括空间三个方向上的周期大小,原胞可以取最小重复单元(原胞或称为初基晶胞),结点只在胞可以取最小重复单元(原胞或称为初基晶胞),结点只在顶角上。顶角上。反映对称性特征:反映对称性特征:晶体都具有自己特殊对称性。晶体都具有自己特殊对称性。结晶学上所取晶胞体积不一定最小,结点不一定只在顶角上,结晶学上所取晶胞体积不一定最小,结点不一定只在顶角上,可以在体心或面心上(晶体学晶胞);可以在体心或面心上(晶体学晶胞);晶胞边长总是一个周期,并各沿三个晶轴方向;晶胞边长总是一个周期,并各沿三个晶轴方向;晶胞体积为原胞体积的整数倍数。晶胞体积为原胞体积的整数倍数。你现在浏览的是第八页,共39页引出晶胞的意义:引出晶胞的意义:三维格子的周期性可用数学的形式表示如下:三维格子的周期性可用数学的形式表示如下:T(r)=T(r+l1a1+l2a2+l2a3)r为重复单元中任意处的矢量;为重复单元中任意处的矢量;T为晶格中任意物理量;为晶格中任意物理量;l1、l2、l3是整数,是整数,a1、a2、a3是重复单元的边长矢量。是重复单元的边长矢量。为进行固体物理学中的计算带来很大的方便。为进行固体物理学中的计算带来很大的方便。位矢位矢RrR+r你现在浏览的是第九页,共39页布喇菲点阵的特点:布喇菲点阵的特点:每点周围情况都一样。是由一个结点沿三维空间周期性每点周围情况都一样。是由一个结点沿三维空间周期性平移形成。平移形成。晶体的基元中包含两种或两种以上原子,每个基元中,晶体的基元中包含两种或两种以上原子,每个基元中,相应的同种原子各构成和结点相同网格相应的同种原子各构成和结点相同网格-子晶格(或子晶格(或亚晶格)。亚晶格)。复式格子(或晶体格子)是由所有相同结构子晶格相复式格子(或晶体格子)是由所有相同结构子晶格相互位移套构形成。互位移套构形成。4 .结点的总体结点的总体-不喇菲点阵或不喇菲格子不喇菲点阵或不喇菲格子你现在浏览的是第十页,共39页晶体格子(简称晶格):晶体中原子排列的具体形晶体格子(简称晶格):晶体中原子排列的具体形式。式。原子规则堆积的意义:把晶格设想成为原子规则堆积,有原子规则堆积的意义:把晶格设想成为原子规则堆积,有助于理解晶格组成,晶体结构及与其有关的性能等。助于理解晶格组成,晶体结构及与其有关的性能等。二二、晶晶 格格 的的 实实 例例1.简单立方晶格简单立方晶格2.体心立方晶格体心立方晶格3.原子球最紧密排列的两种方式原子球最紧密排列的两种方式你现在浏览的是第十一页,共39页特点:特点:层内为正方排列,是原子球规则排列的最简单形式;层内为正方排列,是原子球规则排列的最简单形式;原子层叠起来,各层球完全对应,形成简单立方晶格;原子层叠起来,各层球完全对应,形成简单立方晶格;这种晶格在实际晶体中不存在,但是一些更复杂的晶格这种晶格在实际晶体中不存在,但是一些更复杂的晶格可以在简单立方晶格基础上加以分析。可以在简单立方晶格基础上加以分析。原子球的正方排列原子球的正方排列简单立方晶格典型单元简单立方晶格典型单元1.简单立方晶格简单立方晶格你现在浏览的是第十二页,共39页简单立方晶格的原子球心形成一个三维立方格子结构,简单立方晶格的原子球心形成一个三维立方格子结构,整个晶格可以看作是这样一个典型单元沿着三个方向重整个晶格可以看作是这样一个典型单元沿着三个方向重复排列构成的结果。复排列构成的结果。简单立方晶格单元沿着三个方向重复排列构成的图形简单立方晶格单元沿着三个方向重复排列构成的图形你现在浏览的是第十三页,共39页2.体心立方晶格体心立方晶格 体心立方晶格的典型单元体心立方晶格的典型单元排列规则排列规则:层与层堆积方式是上面一层原子球心对准下层与层堆积方式是上面一层原子球心对准下面一层球隙,下层球心的排列位置用面一层球隙,下层球心的排列位置用A标记,上面一层标记,上面一层球心的排列位置用球心的排列位置用B标记,体心立方晶格中正方排列原标记,体心立方晶格中正方排列原子层之间的堆积方式可以表示为子层之间的堆积方式可以表示为:AB AB AB AB体心立方晶格的堆积方式体心立方晶格的堆积方式你现在浏览的是第十四页,共39页体心立方晶格的特点:体心立方晶格的特点:为了保证同一层中原子球间的距离等于为了保证同一层中原子球间的距离等于A-A层之间的距离,层之间的距离,正方排列的原子球并不是紧密靠在一起;正方排列的原子球并不是紧密靠在一起;由几何关系证明,间隙由几何关系证明,间隙=0.31r0,r0为原子球的半径。为原子球的半径。具有体心立方晶格结构的金属:具有体心立方晶格结构的金属:Li、Na、K、Rb、Cs、Fe等,等,你现在浏览的是第十五页,共39页密排面密排面:原子球在该平面内以最紧密方式排列。原子球在该平面内以最紧密方式排列。堆积方式:在堆积时把一层的球心对准另一层球隙,堆积方式:在堆积时把一层的球心对准另一层球隙,获得最紧密堆积,可以形成两种不同最紧密晶格排列。获得最紧密堆积,可以形成两种不同最紧密晶格排列。AB AB AB排列排列(六角密排晶格)(六角密排晶格)ABC ABC ABC排列排列(立方密堆)(立方密堆)3.原子球最紧密排列的两种方式原子球最紧密排列的两种方式你现在浏览的是第十六页,共39页前一种为六角密排晶格,(如前一种为六角密排晶格,(如Be、Mg、Zn、Cd),),后一种晶格为立方密排晶格,或面心立方晶格(如后一种晶格为立方密排晶格,或面心立方晶格(如Cu、Ag、Au、Al)面心立方晶格面心立方晶格 (立方密排晶格)(立方密排晶格)面心(面心(111)以立方密堆方式排列以立方密堆方式排列你现在浏览的是第十七页,共39页 面心立方晶体(立方密排晶格)面心立方晶体(立方密排晶格)你现在浏览的是第十八页,共39页六方密堆晶格的原胞六方密堆晶格的原胞你现在浏览的是第十九页,共39页三三、布喇菲格子与复式格子、布喇菲格子与复式格子把基元只有一个原子的晶格,叫做不喇菲格子;把基元只有一个原子的晶格,叫做不喇菲格子;把基元包含两个或两个以上原子的,叫做复式格子把基元包含两个或两个以上原子的,叫做复式格子。注:注:如果晶体由一种原子构成,但在晶体中原子周围的情如果晶体由一种原子构成,但在晶体中原子周围的情况并不相同(例如用况并不相同(例如用X射线方法,鉴别出原子周围电射线方法,鉴别出原子周围电子云的分布不一样),则这样的晶格虽由一种原子子云的分布不一样),则这样的晶格虽由一种原子组成,但不是不喇菲格子,而是复式格子。原胞中组成,但不是不喇菲格子,而是复式格子。原胞中包含两个原子。包含两个原子。你现在浏览的是第二十页,共39页注:注:结点的概念以及结点所组成的不喇菲格子的概念,结点的概念以及结点所组成的不喇菲格子的概念,对于反映晶体中的周期性是很有用的。对于反映晶体中的周期性是很有用的。基元中不同原子所构成的集体运动常可概括为复式格子基元中不同原子所构成的集体运动常可概括为复式格子中各个子晶格之间的相对运动。中各个子晶格之间的相对运动。固体物理在讨论晶体内部粒子的集体运动时,对于基固体物理在讨论晶体内部粒子的集体运动时,对于基元中包含两个或两个以上原子的晶体,复式格子的概元中包含两个或两个以上原子的晶体,复式格子的概念显得重要,念显得重要,你现在浏览的是第二十一页,共39页四、结晶学晶胞与原胞间的相互转化四、结晶学晶胞与原胞间的相互转化 简立方简立方 体立方体立方 面心立方面心立方 立方晶系不喇菲原胞立方晶系不喇菲原胞原胞的基矢为:原胞的基矢为:a1=ia,a2=ja,a3=ka结晶学中,属于立方晶系的不喇菲原胞有简立方、结晶学中,属于立方晶系的不喇菲原胞有简立方、体心立方和面心立方。体心立方和面心立方。1.简立方简立方你现在浏览的是第二十二页,共39页2.体心立方体心立方你现在浏览的是第二十三页,共39页固体物理学的原胞基矢与结晶学原胞基矢的关系:固体物理学的原胞基矢与结晶学原胞基矢的关系:a1=(-i+j+k)a2 a2=(k+i-j)a2 a3=(i+j-k)a2体积关系:体积关系:结晶学原胞的体积是物理学原胞的结晶学原胞的体积是物理学原胞的2倍。倍。原因是结晶学原胞中含有两个原子,而物理学原胞中原因是结晶学原胞中含有两个原子,而物理学原胞中含有一个原子。含有一个原子。你现在浏览的是第二十四页,共39页R=l1a1+l2a2+l2a3R=2a1+a2+a3R物理物理=a2+a3R结晶结晶=(1/2)a+(1/2)a+a=(1/2)(a+a+2a)3.面心立方面心立方a1a2a3你现在浏览的是第二十五页,共39页4.六角密堆六角密堆固体物理学的原胞基矢与结晶固体物理学的原胞基矢与结晶学原胞基矢的关系:学原胞基矢的关系:a1=(j+k)a2 a2=(k+i)a2 a3=(i+j)a2体积关系:体积关系:结晶学原胞的体积是物理学原胞的结晶学原胞的体积是物理学原胞的4倍。原倍。原因是结晶学原胞中含有因是结晶学原胞中含有4个原子,而物理学原胞中含个原子,而物理学原胞中含有一个原子。有一个原子。你现在浏览的是第二十六页,共39页晶体结构的一些重要概念v(一)原子半径:对于同种元素原子构成的晶体,原子半径r通常是指原胞中相近的两个原子之间距离的一半。它与晶格常数a之间有一定的关系。例如面心立方中:(二)配位数:晶体中原子排列的紧密程度是区别不同晶体结构的重要特征,通常用配位数来描述。配位数是指晶体中任一原子最近邻的原子数目。该数目越大,则晶体中原子排列越紧密。(三)致密度:另一种描述晶体中原子排列的紧密程度的物理量,是晶体中原子所占总体积与晶体总体积之比。若晶胞中含有n个原子,每个原子的体积为v,晶胞总体积为V则:致密度:你现在浏览的是第二十七页,共39页(四)、晶列(四)、晶列 1.晶列晶列通过任意两个格点连一直线,则这一直线包含无限个相同通过任意两个格点连一直线,则这一直线包含无限个相同格点,这样的直线称为晶列,也是晶体外表上所见的晶棱。格点,这样的直线称为晶列,也是晶体外表上所见的晶棱。其上的格点分布具有一定的周期其上的格点分布具有一定的周期-任意两相邻格点的任意两相邻格点的间距。间距。你现在浏览的是第二十八页,共39页1.晶列的特点晶列的特点(1)一族平行晶列把所有点)一族平行晶列把所有点 包括无遗。包括无遗。(2)在一平面中,同族的相邻晶列之间的距离相等。)在一平面中,同族的相邻晶列之间的距离相等。(3)通过一格点可以有无限)通过一格点可以有无限 多个晶列,其中每一晶列都有一族平多个晶列,其中每一晶列都有一族平行的晶列与之对应。行的晶列与之对应。(4)有无限多族平行晶列。)有无限多族平行晶列。你现在浏览的是第二十九页,共39页 -。晶面的特点:晶面的特点:(1)通过任一格点,可以作全同的晶面与一晶面平行,构成一族平)通过任一格点,可以作全同的晶面与一晶面平行,构成一族平行晶面行晶面.(2)所有的格点都在一族平行的晶面上而无遗漏;)所有的格点都在一族平行的晶面上而无遗漏;(3)一族晶面平行且等距,各晶面上格点分布情况相同;)一族晶面平行且等距,各晶面上格点分布情况相同;(4)晶格中有无限多族的平行晶面。)晶格中有无限多族的平行晶面。(五)、晶面(五)、晶面你现在浏览的是第三十页,共39页(六)、晶向(六)、晶向 一族晶列的特点是晶列的取向,该取向为晶向;一族晶列的特点是晶列的取向,该取向为晶向;同样一族晶面的特点也由取向决定,因此无论对于晶列或同样一族晶面的特点也由取向决定,因此无论对于晶列或晶面,只需标志其取向。晶面,只需标志其取向。注:为明确起见,下面仍只讨论物理学的布喇菲格子。注:为明确起见,下面仍只讨论物理学的布喇菲格子。你现在浏览的是第三十一页,共39页任一格点任一格点 A的位矢的位矢Rl为为 Rl=l1a1+l2a2+l3a3式中式中l1、l2、l3是整数。若互质,直接用他们来表征晶列是整数。若互质,直接用他们来表征晶列OA的方向的方向(晶向),这三个互质整数为晶列的指数,记以(晶向),这三个互质整数为晶列的指数,记以 l1,l2,l3同样,在结晶学上,原胞不是最小的重复单元,而原胞的体积是同样,在结晶学上,原胞不是最小的重复单元,而原胞的体积是最小重复简单整数倍,以任一格点最小重复简单整数倍,以任一格点o为原点,为原点,a、b、c为基矢,任为基矢,任何其他格点何其他格点A的位矢为的位矢为 k ma+knb+kpc其中其中m、n、p为三个互质整数,于是用为三个互质整数,于是用m、n、p来表示晶列来表示晶列OA的方的方向,记以向,记以nmp。1.晶列指数晶列指数 (晶列方向的表示方法)(晶列方向的表示方法)ORlAa1a2a3你现在浏览的是第三十二页,共39页表示晶面的方法,即方位表示晶面的方法,即方位:在一个坐标系中用该平面在一个坐标系中用该平面的法线方向的余弦;或表示出这平面在座标轴上的截的法线方向的余弦;或表示出这平面在座标轴上的截距。距。a1a2a3设这一族晶面的面间距为设这一族晶面的面间距为d,它的法,它的法线方向的单位矢量为线方向的单位矢量为n,则这族晶面中,离开原点的距离等则这族晶面中,离开原点的距离等于于 d的晶面的方程式为:的晶面的方程式为:m为整数;为整数;R是晶面上的任意点的位是晶面上的任意点的位矢。矢。R2.密勒指数(密勒指数(晶面方向的表示方法)晶面方向的表示方法)R n=d你现在浏览的是第三十三页,共39页设此晶面与三个座标轴的交点的位矢分别为设此晶面与三个座标轴的交点的位矢分别为ra1、sa2、ta3,代入上式,则有代入上式,则有 ra1cos(a1,n)=d sa2cos(a2,n)=d ta3cos(a3,n)=da1、a2、a3取单位长度,则得取单位长度,则得cos(a1,n):cos(a2,n):cos(a3,n)=1r:1s:1t结论:晶面的法线方向结论:晶面的法线方向n与三个坐标轴(基矢)的夹角的余与三个坐标轴(基矢)的夹角的余弦之比等于晶面在三个轴上的截距的倒数之比。弦之比等于晶面在三个轴上的截距的倒数之比。你现在浏览的是第三十四页,共39页 已知一族晶面必包含所有的格点已知一族晶面必包含所有的格点,因此在三个基矢末,因此在三个基矢末端的格点必分别落在该族的不同的晶面上。端的格点必分别落在该族的不同的晶面上。设设a1、a2、a3的末端上的格点分别在离原点的距离为的末端上的格点分别在离原点的距离为h1d、h2d、h3d的晶面上,其中的晶面上,其中h1、h2、h3都是整数,三个晶都是整数,三个晶面分别有面分别有 a1n=h1d,a2n=h2d,a3n=h3dn是这一族晶面公共法线的单位矢量,于是是这一族晶面公共法线的单位矢量,于是 a1cos(a1,n)=h1d a2cos(a2,n)=h2d a3cos(a3,n)=h3d证明截距的倒数之比为证明截距的倒数之比为整数之比整数之比你现在浏览的是第三十五页,共39页cos(a1,n):cos(a2,n):cos(a3,n)=h1:h2:h3结论:结论:晶面族的法线与三个基矢的夹角的余弦之比等于三晶面族的法线与三个基矢的夹角的余弦之比等于三个整数之比。个整数之比。可以证明可以证明:h1、h2、h3三个数互质,称它们为该晶面族的面三个数互质,称它们为该晶面族的面指数,记以(指数,记以(h1h2h3)。)。即把晶面在座标轴上的截距的倒数的比简约为互质的整即把晶面在座标轴上的截距的倒数的比简约为互质的整数比,所得的互质整数就是面指数。数比,所得的互质整数就是面指数。几几何意义何意义:在基矢的两端各有一个晶面通过,且这两个晶在基矢的两端各有一个晶面通过,且这两个晶面为同族晶面,在二者之间存在面为同族晶面,在二者之间存在hn个晶面,所以最靠近个晶面,所以最靠近原点的晶面(原点的晶面(=1)在坐标轴上的截距为在坐标轴上的截距为a1/h1、a2/h2、a3/h3,同族的其他晶面的截距为这组截距的整数倍。同族的其他晶面的截距为这组截距的整数倍。你现在浏览的是第三十六页,共39页实际工作中,常以结晶学原胞的基矢实际工作中,常以结晶学原胞的基矢a、b、c为坐标轴为坐标轴来表示面指数。在这样的坐标系中,标征晶面取向的来表示面指数。在这样的坐标系中,标征晶面取向的互质整数称为晶面族的密勒指数,用互质整数称为晶面族的密勒指数,用(hkl)表示。表示。例如:例如:有一有一ABC面,截距为面,截距为4a、b、c,截距的倒数为截距的倒数为1/4、1、1,它的密勒指数为(,它的密勒指数为(1,4,4)。)。另有一晶面,截距为另有一晶面,截距为2a、4b、c,截距的倒数为截距的倒数为1/2、1/4、0,它的密勒指数为(,它的密勒指数为(2、1、0)。)。你现在浏览的是第三十七页,共39页简单晶面指数的特点:简单晶面指数的特点:晶轴本身的晶列指数特别简单,为晶轴本身的晶列指数特别简单,为100、010、001;晶体中重要的带轴的指数都是简单的;晶体中重要的带轴的指数都是简单的;晶面指数简单的晶面如晶面指数简单的晶面如(110)、()、(111)是重要)是重要的晶面;的晶面;晶面指数越简单的晶面,面间距晶面指数越简单的晶面,面间距d就越大,格点就越大,格点的面密度大,易于解理;的面密度大,易于解理;格点的面密度大,表面能小,在晶体生长过程格点的面密度大,表面能小,在晶体生长过程中易于显露在外表;对中易于显露在外表;对X射线的散射强,在射线的散射强,在X射线射线衍射中,往往为照片中的浓黑斑点所对应。衍射中,往往为照片中的浓黑斑点所对应。你现在浏览的是第三十八页,共39页 晶体的基本特征是结构具有周期性。用空间点阵概括周期性,空晶体的基本特征是结构具有周期性。用空间点阵概括周期性,空间点阵是由间点阵是由R=l1a1+l2a2+l3a3的点的集合组成的点阵。的点的集合组成的点阵。布喇菲格子的最主要特征是每个格点周围的情况都一样。布喇菲格子的最主要特征是每个格点周围的情况都一样。对于多个原子组成的对于多个原子组成的“分子分子”,将其看作基元。真实的,将其看作基元。真实的晶体结构是由点阵晶体结构是由点阵+基元构成。基元构成。晶体结构的周期性重复单元称为原胞。最小的重复单元是固体物晶体结构的周期性重复单元称为原胞。最小的重复单元是固体物理学原胞(包含一个原子或一个理学原胞(包含一个原子或一个“分子分子”),最小单元的整数倍),最小单元的整数倍是结晶学原胞(包含多个原子或多个是结晶学原胞(包含多个原子或多个“分子分子”)。由周围情况相)。由周围情况相同的原子组成的格子为子晶胞,子晶胞相互沿空间移动(套购)同的原子组成的格子为子晶胞,子晶胞相互沿空间移动(套购)形成的晶胞为复式格子。形成的晶胞为复式格子。晶体中的晶面用密勒指数表示。晶体中的晶面用密勒指数表示。重要的简单结构有体心立方、面心立方、六角密堆、氯化钠、氯重要的简单结构有体心立方、面心立方、六角密堆、氯化钠、氯化铯、金刚石结构。化铯、金刚石结构。小小 结结你现在浏览的是第三十九页,共39页