欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    电磁场电磁波第四章时变电磁场优秀PPT.ppt

    • 资源ID:52105271       资源大小:2.67MB        全文页数:33页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    电磁场电磁波第四章时变电磁场优秀PPT.ppt

    电磁场电磁波第四章时变电磁场1现在学习的是第1页,共33页4.1 波动方程波动方程 在无源空间中,设媒质是线性、各向同性且无损耗的均匀媒质,则有在无源空间中,设媒质是线性、各向同性且无损耗的均匀媒质,则有 无源区的波动方程无源区的波动方程 波动方程波动方程 二二阶矢量微分方程,阶矢量微分方程,揭示电磁场的波动性。揭示电磁场的波动性。麦克斯韦方程麦克斯韦方程 一阶矢量微分方程组,描述电场与磁场一阶矢量微分方程组,描述电场与磁场 间的相互作用关系。间的相互作用关系。麦克斯韦方程组麦克斯韦方程组 波动方程。波动方程。问题的提出问题的提出电磁波动方程电磁波动方程2现在学习的是第2页,共33页同理可得同理可得 推证推证 问题问题 若为有源空间,结果如何?若为有源空间,结果如何?若为导电媒质,结果如何?若为导电媒质,结果如何?3现在学习的是第3页,共33页引入位函数来描述时变电磁场,使一些问题的分析得到简化。引入位函数来描述时变电磁场,使一些问题的分析得到简化。引入位函数的意义引入位函数的意义 位函数的定义位函数的定义4现在学习的是第4页,共33页 位函数的不确定性位函数的不确定性 满满足足下下列列变变换换关关系系的的两两组组位位函函数数 和和 能能描描述述同同一一个个电磁场问题。电磁场问题。即即也就是说,对一给定的电磁场可用不同的位函数来描述。也就是说,对一给定的电磁场可用不同的位函数来描述。不同位函数之间的上述变换称为规范变换。不同位函数之间的上述变换称为规范变换。原因原因:未规定:未规定 的散度。的散度。为任意可微函数为任意可微函数5现在学习的是第5页,共33页除了利用洛仑兹条件外,另一种常用的是库仑条件,即除了利用洛仑兹条件外,另一种常用的是库仑条件,即 在电磁理论中,通常采用洛仑兹条件,即在电磁理论中,通常采用洛仑兹条件,即 位函数的规范条件位函数的规范条件 造成位函数的不确定性的原因就是没有规定造成位函数的不确定性的原因就是没有规定 的散度。利用位的散度。利用位函数的不确定性,函数的不确定性,可通过规定可通过规定 散度使位函数满足的方程得以散度使位函数满足的方程得以简化。简化。6现在学习的是第6页,共33页 位函数的微分方程位函数的微分方程7现在学习的是第7页,共33页同样同样8现在学习的是第8页,共33页 说明说明 应用洛仑兹条件的特点:应用洛仑兹条件的特点:位函数满足的方程在形式上是对称位函数满足的方程在形式上是对称 的,且比较简单,易求解;的,且比较简单,易求解;解的物理意义非常清楚,明确地解的物理意义非常清楚,明确地 反映出电磁场具有有限的传递速度;反映出电磁场具有有限的传递速度;矢量位只决定于矢量位只决定于J,标,标 量位只决定于量位只决定于,这对求解方程特别有利。只需解出这对求解方程特别有利。只需解出A,无需,无需 解出解出 就可得到待求的电场和磁场。就可得到待求的电场和磁场。电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应 用不同的规范条件,矢量位用不同的规范条件,矢量位A和标量位和标量位 的解也不相同,但最终的解也不相同,但最终 得到的电磁场矢量是相同的。得到的电磁场矢量是相同的。9现在学习的是第9页,共33页 进入体积进入体积V的能量体积的能量体积V内增加的能量体积内增加的能量体积V内损耗的能量内损耗的能量电场能量密度电场能量密度:磁场能量密度磁场能量密度:电磁能量密度电磁能量密度:空间区域空间区域V中的电磁能量中的电磁能量:特点特点:当场随时间变化时,空间各点的电磁场能量密度也要随:当场随时间变化时,空间各点的电磁场能量密度也要随 时间改变,从而引起电磁能量流动。时间改变,从而引起电磁能量流动。电磁能量守恒关系:电磁能量守恒关系:电磁能量及守恒关系电磁能量及守恒关系10现在学习的是第10页,共33页其中其中:单位时间内体积单位时间内体积V 中所增加中所增加 的电磁能量。的电磁能量。单位时间内电场对体积单位时间内电场对体积V中的电流所做的功;中的电流所做的功;在导电媒质中,即为体积在导电媒质中,即为体积V内总的损耗功率。内总的损耗功率。通过曲面通过曲面S 进入体积进入体积V 的电磁功率。的电磁功率。表征电磁能量守恒关系的定理表征电磁能量守恒关系的定理积分形式积分形式:坡坡印廷定理印廷定理微分形式微分形式:11现在学习的是第11页,共33页在线性和各向同性的媒质中,当参数都不随时间变化时,则有在线性和各向同性的媒质中,当参数都不随时间变化时,则有将以上两式相减,得到将以上两式相减,得到由由 推证推证12现在学习的是第12页,共33页即可得到坡印廷定理的微分形式即可得到坡印廷定理的微分形式再利用矢量恒等式再利用矢量恒等式:在在任任意意闭闭曲曲面面S 所所包包围围的的体体积积V上上,对对上上式式两两端端积积分分,并并应应用用散散度度定定理理,即即可得到坡印廷定理的积分形式可得到坡印廷定理的积分形式 物理意义:物理意义:单位时间内,通过曲面单位时间内,通过曲面S 进入体积进入体积V的电磁能量等于的电磁能量等于 体积体积V 中所增加的电磁场能量与损耗的能量之和。中所增加的电磁场能量与损耗的能量之和。13现在学习的是第13页,共33页 定义:定义:(W/m2)物理意义物理意义:的方向的方向 电磁能量传输的方向电磁能量传输的方向 的大小的大小 通过垂直于能量传输方通过垂直于能量传输方 向的单位面积的电磁功率向的单位面积的电磁功率 描述时变电磁场中电磁能量传输的一个重要物理量描述时变电磁场中电磁能量传输的一个重要物理量 坡印廷矢量(电磁能流密度矢量)坡印廷矢量(电磁能流密度矢量)14现在学习的是第14页,共33页4.4 惟一性定理惟一性定理 在以闭曲面在以闭曲面S为边界的有界区域为边界的有界区域V 内,内,如果给定如果给定t0 时刻的电场强度和磁场强度时刻的电场强度和磁场强度的初始值,并且在的初始值,并且在 t 0 时,给定边界面时,给定边界面S上的电场强度的切向分量或磁场强度的切向分量,那么,在上的电场强度的切向分量或磁场强度的切向分量,那么,在 t 0 时,区时,区域域V 内的电磁场由麦克斯韦方程惟一地确定。内的电磁场由麦克斯韦方程惟一地确定。惟一性定理的表述惟一性定理的表述 在分析有界区域的时变电磁场问题时,常常需要在给定的初始条件和在分析有界区域的时变电磁场问题时,常常需要在给定的初始条件和边界条件下,求解麦克斯韦方程。那么,在什么定解条件下,有界区域中边界条件下,求解麦克斯韦方程。那么,在什么定解条件下,有界区域中的麦克斯韦方程的解才是惟一的呢?这就是麦克斯韦方程的解的惟一问题。的麦克斯韦方程的解才是惟一的呢?这就是麦克斯韦方程的解的惟一问题。惟一性问题惟一性问题15现在学习的是第15页,共33页 惟一性定理的证明惟一性定理的证明 利用反证法对惟一性定理给予证明。假设区域利用反证法对惟一性定理给予证明。假设区域内的解不是惟内的解不是惟一的,那么至少存在两组解一的,那么至少存在两组解 、和和 、满足同样的满足同样的麦克斯韦方程,且具有相同的初始条件和边界条件。麦克斯韦方程,且具有相同的初始条件和边界条件。则在区域则在区域V 内内 和和 的初始值为零;在边界面的初始值为零;在边界面S 上电场强度上电场强度 的切的切向分量为零或磁场强度向分量为零或磁场强度 的切向分量为零,且的切向分量为零,且 和和 满足麦克斯满足麦克斯韦方程韦方程令令16现在学习的是第16页,共33页根据坡印廷定理,应有根据坡印廷定理,应有所以所以由于场的初始值为零,将上式两边对由于场的初始值为零,将上式两边对 t 积分,可得积分,可得根据根据 和和 的边界条件,上式左端的被积函数为的边界条件,上式左端的被积函数为17现在学习的是第17页,共33页上式中两项积分的被积函数均为非负的,要使得积分为零,必有上式中两项积分的被积函数均为非负的,要使得积分为零,必有(证毕)(证毕)即即 惟一性定理指出了获得惟一解所必须满足的条件,为电磁场惟一性定理指出了获得惟一解所必须满足的条件,为电磁场 问题的求解提供了理论依据,具有非常重要的意义和广泛的问题的求解提供了理论依据,具有非常重要的意义和广泛的 应用。应用。18现在学习的是第18页,共33页4.5 时谐电磁场时谐电磁场 复矢量的麦克斯韦方程复矢量的麦克斯韦方程 时谐电磁场的复数表示时谐电磁场的复数表示 复电容率和复磁导率复电容率和复磁导率 时谐场的位函数时谐场的位函数 亥姆霍兹方程亥姆霍兹方程 平均能流密度矢量平均能流密度矢量19现在学习的是第19页,共33页 时谐电磁场的概念时谐电磁场的概念 如果场源以一定的角频率随时间呈时谐(正弦或余弦)变化,则所产生电如果场源以一定的角频率随时间呈时谐(正弦或余弦)变化,则所产生电磁场也以同样的角频率随时间呈时谐变化。这种以一定角频率作时谐变化的电磁场也以同样的角频率随时间呈时谐变化。这种以一定角频率作时谐变化的电磁场,称为时谐电磁场或正弦电磁场。磁场,称为时谐电磁场或正弦电磁场。研究时谐电磁场具有重要意义研究时谐电磁场具有重要意义 在工程上,应用最多的就是时谐电磁场。在工程上,应用最多的就是时谐电磁场。广播、电视和通信广播、电视和通信 的载波等都是时谐电磁场。的载波等都是时谐电磁场。任意的时变场在一定的条件下可通过傅里叶分析方法展开为不任意的时变场在一定的条件下可通过傅里叶分析方法展开为不 同频率的时谐场的叠加。同频率的时谐场的叠加。4.5.1 时谐电磁场的复数表示时谐电磁场的复数表示20现在学习的是第20页,共33页 时谐电磁场可用复数方法来表示,使得大多数时谐电磁场问题的分析得以时谐电磁场可用复数方法来表示,使得大多数时谐电磁场问题的分析得以简化。简化。设设 是是一一个个以以角角频频率率 随随时时间间t t 作作正正弦弦变变化化的的场场量量,它它可可以以是是电电场场和和磁磁场场的的任任意意一一个个分分量量,也也可可以以是是电电荷荷或或电电流流等等变变量量,它与时间的关系可以表示成它与时间的关系可以表示成其中其中时间因子时间因子空间相位因子空间相位因子 利用三角公式利用三角公式式中的式中的A0为振幅、为振幅、为与坐标有关的相位因子。为与坐标有关的相位因子。实数表示法或实数表示法或瞬时表示法瞬时表示法复数表示法复数表示法复振幅复振幅 时谐电磁场的时谐电磁场的复数表示复数表示21现在学习的是第21页,共33页 复数式只是数学表示方式,不代表真实的场。复数式只是数学表示方式,不代表真实的场。照此法,矢量场的各分量照此法,矢量场的各分量Ei(i 表示表示x、y 或或 z)可表示成)可表示成 各分量合成以后,电场强度为各分量合成以后,电场强度为 有关复数表示的进一步说明有关复数表示的进一步说明复矢量复矢量 真实场是复数式的实部,即瞬时表达式。真实场是复数式的实部,即瞬时表达式。由于时间因子是默认的,有时它不用写出来,只用与坐标有由于时间因子是默认的,有时它不用写出来,只用与坐标有 关的部分就可表示复矢量。关的部分就可表示复矢量。22现在学习的是第22页,共33页 例例4.5.1 将下列场矢量的瞬时值形式写为复数形式将下列场矢量的瞬时值形式写为复数形式(2)解:解:(1)由于)由于(1)所以所以23现在学习的是第23页,共33页(2)因为)因为 故故 所以所以 24现在学习的是第24页,共33页 例例4.5.2 已知电场强度复矢量已知电场强度复矢量解解其中其中kz和和Exm为实常数。写出电场强度的瞬时矢量为实常数。写出电场强度的瞬时矢量25现在学习的是第25页,共33页以电场旋度方程以电场旋度方程 为例,代入相应场量的矢量,可得为例,代入相应场量的矢量,可得 将将 、与与 交换次序,得交换次序,得上式对任意上式对任意 t 均成立。令均成立。令 t0,得,得4.5.2 复矢量的麦克斯韦方程复矢量的麦克斯韦方程令令t/2,得,得即即26现在学习的是第26页,共33页 例题例题:已知正弦电磁场的电场瞬时值为:已知正弦电磁场的电场瞬时值为式中式中 解解:(1)因为)因为故电场的复矢量为故电场的复矢量为试求:(试求:(1)电场的复矢量)电场的复矢量;(2)磁场的复矢量和瞬时值。)磁场的复矢量和瞬时值。27现在学习的是第27页,共33页从从形形式式上上讲讲,只只要要把把微微分分算算子子 用用 代代替替,就就可可以以把把时时谐谐电电磁磁场场的的场场量量之之间间的的关关系系,转转换换为为复复矢矢量量之之间间关关系系。因因此此得得到到复复矢矢量量的的麦克斯韦方程麦克斯韦方程 略去略去“.”和下标和下标m28现在学习的是第28页,共33页(2)由复数形式的麦克斯韦方程,得到磁场的复矢量)由复数形式的麦克斯韦方程,得到磁场的复矢量磁场强度瞬时值磁场强度瞬时值29现在学习的是第29页,共33页实际的介质都存在损耗:实际的介质都存在损耗:导电媒质导电媒质当电导率有限时,存在欧姆损耗。当电导率有限时,存在欧姆损耗。电介质电介质受到极化时,存在电极化损耗。受到极化时,存在电极化损耗。磁介质磁介质受到磁化时,存在磁化损耗。受到磁化时,存在磁化损耗。损耗的大小与媒质性质、随时间变化的频率有关。一些媒质损耗的大小与媒质性质、随时间变化的频率有关。一些媒质 的损耗在低频时可以忽略,但在高频时就不能忽略。的损耗在低频时可以忽略,但在高频时就不能忽略。4.5.3 复电容率和复磁导率复电容率和复磁导率 导电媒质的等效介电常数导电媒质的等效介电常数其中其中 c=j/、称为导电媒质的等效介电常数。、称为导电媒质的等效介电常数。对于介电常数为对于介电常数为 、电导率为、电导率为 的导电媒质,有的导电媒质,有30现在学习的是第30页,共33页 电介质的复介电常数电介质的复介电常数 同时存在极化损耗和欧姆损耗的介质同时存在极化损耗和欧姆损耗的介质 磁介质的复磁导率磁介质的复磁导率 对对于于存存在在电电极极化化损损耗耗的的电电介介质质,有有 ,称称为为复复介介电电常常数数或或复复电电容容率率。其其虚虚部部为为大大于于零零的的数数,表表示示电电介介质质的的电电极极化化损损耗耗。在高频情况下,实部和虚部都是频率的函数。在高频情况下,实部和虚部都是频率的函数。对于同时存在电极化损耗和欧姆损耗的电介质,复介电常数为对于同时存在电极化损耗和欧姆损耗的电介质,复介电常数为 对对于于磁磁性性介介质质,复复磁磁导导率率数数为为 ,其其虚虚部部为为大大于于零零的的数,表示磁介质的磁化损耗。数,表示磁介质的磁化损耗。31现在学习的是第31页,共33页理想介质理想介质4.5.4 亥姆霍兹方程亥姆霍兹方程 在在时时谐谐时时情情况况下下,将将 、,即即可可得得到到复复矢矢量量的的波波动动方方程程,称为亥姆霍兹方程。称为亥姆霍兹方程。瞬时矢量瞬时矢量复矢量复矢量32现在学习的是第32页,共33页4.5.5 时谐场的位函数时谐场的位函数 在在时时谐谐情情况况下下,矢矢量量位位和和标标量量位位以以及及它它们们满满足足的的方方程程都都可可以以表表示示成成复数形式。复数形式。洛仑兹条件洛仑兹条件达朗贝尔方程达朗贝尔方程瞬时矢量瞬时矢量复矢量复矢量33现在学习的是第33页,共33页

    注意事项

    本文(电磁场电磁波第四章时变电磁场优秀PPT.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开