欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    【冀教版】七年级数学上册全册教案合集.pdf

    • 资源ID:52161552       资源大小:7.24MB        全文页数:183页
    • 资源格式: PDF        下载积分:40金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要40金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    【冀教版】七年级数学上册全册教案合集.pdf

    1.11.1正数和负数正数和负数【教学整体设计】【教学目标】1 1.掌握正、负数的概念,会识别正、负数;理解什么是具有相反意义的量;会用正、负数表示具有相反意义的量;了解有理数的概念,知道有理数的分类;会判断一个有理数是整数还是分数,是正数还是负数或是零.2 2.体会数学符号与其对应的思想,用正、负数表示具有相反意义的量的符号化方法.通过不同角度对有理数进行分类讨论,学习分类讨论的数学思想方法,探索分类所遵循的原则,力求分类时做到不重不漏.【重点难点】重点:对负数的概念和零的意义的理解,有理数概念的理解,有理数的分类.难点:用正、负数表示具有相反意义的量,正确进行有理数的分类.【教学过程设计】教学过程一、创设情境,导入新课师:我们知道,为了表示物体的个数和事物的顺序,产生了 1,2,3,4,这些数,我们把它们叫做什么数?设计意图生:自然数.师:为了表示“没有”,又引入了一个什么数?生:零.师:当测量和计算的结果不是整数时,又引进了什么数?生:分数(小数).师:可见数的概念是随着生产和生活的需要而不断的发展的.请同学们想一想,在现实生活中是否还存在着其他类型的数呢?如吐鲁番盆地最低处低于海平面 155 米,世界最高峰珠穆朗玛峰高出海平面 8844.43 米,我市某天最高气温是零上 8 摄氏度.请学生用数表示这些量,学生表示很困难.师:为了表示这些量,我们需要引入一种新数,这就是本节课所要学习的内容.(板书:1.1正数和负数)二、师生互动,探究新知1.相反意义的量师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)教师引导学生在自主探究的基础上,分析问题,解决问(1)汽车向东行驶 2.5 千米和向西行驶 1.5 千米.题.在学生回答(2)某超市买进饮料 100 箱和卖出饮料 90 箱.(3)风筝上升 10 米和下降 5 米.的基础上,老师提出问题:它是请学生举出一些具有相反意义的量的实例.教师总结:相反意义中的一些常用词:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等.师:用小学里学过的数能表示具有反意义的量吗?如何来表示具有相反意义的量呢?由师生讨论后得出:我们把一种意义的量规定为正的,用“”(读作“正”)号来表示,同时把另一种与它意义相反的量规定为负的,用“”(读作“负”)号来表示.师:例如,如果零上 6记作6(读作正 6 摄氏度),那么零下 6记作6(读作负 6 摄氏度),请同学们用同样的方法表示教材第 3 页“做一做”1,2 两题.2.正数和负数师:像6,10,2.5 等前面放有“”号的数叫正数,像6,5,1.5 等前面放有“”号的数叫负数.正号可以省略不写,如5 可以写成5,但负数的负号能省略不写吗?生:不能.师:(以温度计为例)温度计中的 0 不是表示没有温度,它通常表示水结成冰时的温度,是零上温度前面学过的一次函数吗?引导学生明确有相反意义的量的特征:(1)有两个量;(2)有相反的意义。与零下温度的分界点,因此得出:零既不是正数,也不是负数.3.有理数(1)有理数的概念.正整数、0 和负整数统称为整数,正分数和负分数统称为分数.整数和分数统称为有理数.(2)有理数的分类.为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同.根据有理数的定义可将有理数分成两类:整数和分数,请学生回答、评论、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和 0,简称正数、负数和 0.并指出,在有理数范围内,正数和零统称为非负数,并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏的分类,例如还可按以下方式分类.(3)运用举例.教材第 6 页“做一做”.三、运用新知,解决问题学生完成教材第 4 页练习 1,第 6 页练习 1,2,3.学生独立完成,教师巡视指导.四、课堂小结,提炼观点1.引入负数可以简明的表示相反意义的量.2.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况而定.3.要特别注意 0 既不是正数也不是负数.4.有理数可以按不同的标准进行分类,标准不同,分类的结果也不同.五、布置作业,巩固提升教材第 67 页习题 A 组 1,2 题,B 组 1,2 题.【教学小结】【板书设计】1.1正数和负数1.相反意义的量2.正数和负数3.有理数(1)概念(2)分类(3)运用1.21.2数轴数轴【教学目标】1 1.掌握数轴的概念,理解数轴上的点和有理数的对应关系.2 2.会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数.3 3.经历从实际中抽象出数学模型的过程,体会类比思想和数形结合思想方法.【重点难点】重点:数轴的概念和用数轴上的点表示有理数.难点:数轴上的点与有理数的关系.【教学过程设计】教学过程一、创设情境,导入新课首先回顾在小学中是如何利用数轴表示正数和0 的.(学生思考回答)上节课学习了负数,能不能在直线上表示出负数呢?换句话说,能不能用数轴上的点表示有理数?(学生猜想)问题:日常生活中的温度计如何读呢?设计意图二、师生互动,探究新知1.观察.教师拿出准备好的温度计,让学生观察并试着读出来,然后把温度计放入冰水混合物10秒后取出,再让学生观察并读出温度,通过多媒体展台,展示温度在零摄氏度以下的温度计,学生观察回答.体会数轴上的点表示正数、零、负数,从而引导学生体会数轴上的点表示有理数的方法,培养学生类比联想的能力.2.探究.把温度计横放,学生观察讨论数轴的特点.老师说明数轴三要素原点、单位长度、正方向.如温度计上 0表示原点,温度计上 3表示位于原点右边 3 个单位长度的点,温度计上5表示位于原点左边 5 个单位长度的点.3.练习与归纳.(1)画一条数轴.(小组内交流画法)(2)展示教材第 9 页例题,学生思考回答.(让学生从两个不同的侧面体会数形结合)(3)4 与4,3 与3,2.5 与2.5 有什么相同点与不同点?在数轴上画出表示这几个有理数的点,观察它们在数轴上的位置有什么关系,比较后归纳、描述并交流.三、运用新知,解决问题教材第 10 页练习.学生独立完成,小组讨论交流.四、课堂小结,提炼观点通过本节课的学习,大家都有哪些收获?谈谈自己的感受.五、布置作业,巩固提升教材第 10 页习题 A 组第 1,2,3 题,B 组第 1题.【教学小结】【板书设计】1.2数轴1.数轴上的点与有理数的对应2.数轴的三要素3.数轴的画法1.31.3绝对值与相反数绝对值与相反数【教学整体设计】【教学目标】1 1.能借助数轴理解相反数和绝对值的意义,会求一个数的相反数和绝对值.在实际生活中能知道相反数和绝对值的意义.会用字母表示一个数的绝对值和这个数的关系,并能借此解决一些简单的问题.2.经历将实际问题数学化的过程,感受数学在生活中的应用价值,经历用字母表示规律的过程,感受由特殊到一般的特点.【重点难点】重点:理解绝对值、相反数的意义,会求一个数的相反数和绝对值.难点:会用绝对值、相反数的意义解释一些实际问题和现象.【教学过程设计】教学过程一、创设情境,导入新课情境:9 月 4 日,李强的爸爸来学校,会见了老师,临走时叫老师把一个纸条转交给李强,老师在整理办公桌时,一不小心将墨汁沾在上面(如图).李强:你好!今天下午 3 点,请你从学校出发沿金箔路走 200米,我在那里等你.设计意图爸一开始,李强根据纸条上的内容和个人的判断却没有见到爸爸,他很生气,认为爸爸平时要求他做一个守信的人,自己却不守信.但是他后来似乎想到了什么,又走出校门,最终见到了爸爸,你能说出其中的原因吗?学生:可能李强没有按照事先约定的时间去.师:材料中已经说明李强是根据纸条上的内容按照事先约定的时间去的.学生:李强走错了方向.师:能不能把你的设想跟大家说一说?学生:比如,李强的爸爸是要他走出校门后,向金箔路的西边走 200 米,而他却向金箔路的东边通过实际走了 200 米,所以第一次李强没有见到爸爸.问题把绝对值师:你的设想正确.的意义明显地(教师给出相关图片,并结合情境说明事情的原揭示出来,让学委)生体会从生活原因:原来李强走出校门后,向金箔路的西边到数学知识形走了 200 米,来到了金箔信用社.而实际上,他爸爸成的过程,在师在学校的东边 200 米处的金宝装饰商场,因为这两生的对话中,学处虽然在学校的东、西两边,但是它们离学校均为生已经不知不200 米,后来李强明白了,来到金宝装饰商场见到了觉地直观感受爸爸.到数轴上绝对师:这件事情给我们什么启示?值的意义.学生:到一个地方去,我们不仅要知道它离我们有多远,而且还要知道它的方向.师:在实际生活中,有时候我们会遇到与距离相关的问题,有时候我们也会遇到与距离和方向有关的问题.师:我们能否将学校、信用社、装饰商场的相对位置在数轴上表示出来?(学生在思考,通过观察发现有的学生对此有点困难)师:面对实际问题,数轴的原点、正方向、单位长度又是如何规定的?学生:把学校定为原点,金箔路以东为正方向.师:(做补充)把学校门口的金箔路看成一条数轴,数轴上的一个单位长度表示 100 米.如图,数轴上的点 A 表示金宝装饰商场,点 B表示信用社.结合数轴分析李强的行走路线:一开始,李强在点 B 处(信用社),他的爸爸在点 A 处(金宝装饰商场),后来李强也来到了点 A 处(金宝装饰商场),他们终于会面了.明确:在数轴上,点 A 与原点的距离是 2,点 B与原点的距离也是 2.二、师生互动,探究新知针对两数1.绝对值的概念及表示只有符号不同,师:请同学们画出数轴,并在数轴上标出表示 4,提出问题:“它4,2,2,0 的点.学生活动:一个学生板演,其他学生在练习本上画.们什么相同呢?”在学生头脑中产生疑师:你能说出 4 和4,2 和2,它们有什么异 问,激发学生探同之处吗?学生活动:思考讨论,很难得出答案.索知识的欲望.由 4,4,师:在数轴上,到原点距离是 4 的点有几个?2,2,3,生:两个,4 和4.师:4 和4 虽然符号不同,但什么是相同的?的数的绝对值生:它们到原点的距离是相同的,都是 4.引出一个数的师:说得非常好,我们把它们到原点的距离叫绝对值,逐层铺做 4 和4 的绝对值.垫,由学生提出师:4的绝对值是表示4的点到原点的距离,绝对值的几何4 的绝对值是 4;4 的绝对值是表示 4 的点到原点意义,既理解了的距离,4 的绝对值是 4.一个数的绝对提出问题:(1)2,2 的绝对值表示什么呢?(2)值的含义,也训13 的绝对值呢?22的绝对值呢?(3)a 的绝对值呢?学生活动:(1)(2)根据教师的引导学生口答.(3)练了口头表达能力.122这些特殊题讨论后回答.(板书)在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.师:4 的绝对值是 4,用数学符号可表示:|14|4.请用数学符号表示出 4,2,2,22,3,0 的绝对值.若干人板演,其余同学在下面完成.2.相反数的概念及表示33师:求,2.5,2.5 的绝对值.883333生口答:|8|8,|8|8,|2.5|2.5,|2.5|2.5.通过绝对值相等的两个数的不同之处,33师:8与8的绝对值是相同的,但是什么不同?引出相反数,体生口答:符号不同.师:2.5 与2.5 是否也有这样的特点?生口答:是.33师:我们把像 2.5 和2.5,8和8等这样符号不同、绝对值相等的两个数,我们称其中一个数是另一个数的相反数,这两个数互为相反数,0 的相反数规定为 0.会绝对值和相反数的联系.由此也得出结论:互为相反数的数绝对值相同,在这里也能体会到相反数在实际中的意义.见教材第 12 页的“大家谈谈”的 1,2.师:表示一个数的相反数时,可以在这个数的前面添上“”号,如 a 的相反数可以表示成a.再如2 的相反数可以表示成(2),请说出下列式子表示什么数的相反数:8(11),(2),(3.75),(13).生口答:(11)表示11 的相反数用字母表示规律是难点,这时教师放手,让学生有目的地考虑分析,共师:你能化简这些式子吗?请说出理由.同得出结论.生:感觉很难解决.师:因为11 的相反数是 11,所以(11)11.2 的相反数是2,所以(2)2.请同学们写出后两个式子的结果.3.一个数的绝对值与这个数的关系学生活动:讨论并作出回答.师:观察数轴,在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数呢?生思考,不能轻易回答出来.33师:再看前面我们求的|8|8,|2.5|2.5,|4|4 以及|4|4,|2|2,|0|0.你能得出什么规律吗?学生思考后口答,老师纠正并板书.(板书)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0 的绝对值是 0.师:字母 a 可以表示任意数,正数、负数或 0,那么 a 的绝对值的结果如何表示?学生活动:生分组讨论,教师加入讨论,生互相补充回答.师:若 a0,|a|a;若 a0,|a|a;若 a0,|a|0.师:这种表示方法就相当于前面第 3 句话,比较起来,后者更简洁易懂.三、运用新知,解决问题31.化简:|0.1|_;|100|_;|0.7|_;|b|_(bb).2.计算:(1)|0.31|0.2|_;(2)|4.1|4.1|_;22(3)(3)|3|_.学生活动:1 题口答,2 题自己演算,三个学生板演.四、课堂小结,提炼观点1.复习什么是相反数、绝对值.2.如何求一个数的绝对值、相反数.3.如何化简带有多个符号的数.4.用字母表示一个数的绝对值和这个数的关系.五、布置作业,巩固提升教材第 14 页习题 A 组.【教学小结】【板书设计】1.3绝对值与相反数1.绝对值的概念及表示2.相反数的概念及表示3.一个数的绝对值与这个数的关系1.41.4有理数的大小有理数的大小【教学整体设计】【教学目标】1 1.通过探索有理数大小比较法则的过程,理解并掌握有理数大小比较法则.2 2.会利用数轴比较有理数的大小;能利用数轴对多个有理数进行有序排列;会利用绝对值比较两个负数的大小.3.能正确运用符号“”“因为”“所以”写出表示推理过程中简单的因果关系.【重点难点】重点:利用数轴比较有理数的大小,利用绝对值比较两个负数的大小.难点:利用绝对值比较两个异分母负分数的大小.【教学过程设计】教学过程一、创设情境,导入新课师:我们前面学习了绝对值,我相信大家学得非常好,一定能做好下面这个题.比较大小:23(1)|3|与|8|,|3|与|4|;(2)4 与5,0.9 与 1.1,10 与 0,9 与1.学生活动:(1)在练习本上演算,两个学生板演.(2)让学生抢答.二、师生互动,探究新知1.规律的发现给出 14 个温度按从低到高排列:4,3,2,1,0,1,2,3,4,5,6,设计意图(1)题用最简单的“因为所以”的形式训练学生简单的推理能力.(2)题是复习利用数轴比较两个数的大小,从而引出课题.7,8,9.按照这个顺序排列的温度,在温度计上所对应的点是从下到上的,按照这个顺序把这些数字表示在数轴上,表示它们各点的顺序是从左到右的.学生活动:在练习本上画出数轴.师:我们已经知道两个正数(或 0)之间怎样比较大小,例如 01,12,23,那任意两个有理数(例如4 和3,2 和 0,1和 1)怎样比较大小呢?教师注意数学中规定,在数轴上表示有理数,它们从左“放”时要让到右的顺序就是从小到大的顺序,即左边的数小于学生带着针对右边的数.性的问题去思由这个规定可知65,54,43,考、分析,既给20,11,学生一片自己得出结论:(1)正数大于 0,0 大于负数,正数大发挥想象的天于负数;(2)两个负数,绝对值大的反而小.地,又使学生不2.例题教学至于偏离既定例 1:比较 3.5,1,0 的大小.目标.在数轴上表示各数,并将它们按从小到大的顺序用“2,负分数的大小所以(1)(2).是这节课的重(2)这是两个负数比较大小,要比较它们的绝对点也是难点,利值.88339|21|21,|7|721.8983因为2121,即|21|7.11(3)先化简,(0.3)0.3,|3|3,1因为 0.33,1所以(0.3)|3|.四、课堂小结,提炼观点明确说明用这几个小题让学生从整体上把握一下方法,达到熟练掌握的程度.师:我们今天主要学习的是两个负数比较大小.利用数轴可以1.两个负数,绝对值大的反而小.比较任意两数2.利用数轴可以比较任意两个数的大小,包括的大小,而利用两个负数.绝对值比较大小只适用两个负数.五、布置作业,巩固提升教材第 17 页习题 A 组第 1,2 题,第 18 页 B组第 1 题.【教学小结】【板书设计】1.4有理数的大小1.规律发现(1)正数大于 0,0 大于负数,正数大于负数(2)两个负数,绝对值大的反而小2.例题教学1.51.5有理数的加法有理数的加法第第1 1课时课时加法法则加法法则【教学整体设计】【教学目标】1 1.经历探索有理数加法法则的过程,理解有理数加法法则,能熟练地进行有理数的加法运算.2.经历运用数学符号来描述现实世界的过程,建立初步符号感,发展抽象思维,尝试从不同角度寻求解决问题的方法,能有效地解决问题.【重点难点】重点:对有理数加法法则的理解,会根据有理数加法法则进行有理数的加法运算.难点:有理数加法中的异号两数如何进行加法运算.【教学过程设计】教学过程一、创设情境,导入新课由红、蓝两个队参加的足球比赛中,红队与蓝队的得分比是42.红队净胜球数是多少?蓝队呢?完成上面问题后,让学生思考:你是怎么算出红、蓝两队的净胜球数的?二、师生互动,探究新知1.导出课题通过上面的分析,导出课题:有理数的加法法则(板书),接着投影显示教学目标、重点难点.2.情境展示为了丰富课余生活,某县实验中学七年级学生组织一个有奖答题游戏,游戏规则:设计意图(1)有 3 分题和 1 分题两类,每位同学都有两次答题机会,均从位置 0 开始答题.(2)第一次回答 3 分题,如果答对(记为3 分),可继续回答 1 分题或放弃作答(记为 0 分);如果第一次答错(记为3 分),可继续回答 1 分题或 3 分题或放弃作答.(3)每得 1 分向右移 1 格,每失 1 分向左移 1 格,放弃作答时原地不动.(4)学生完成作答移位后,在所站的位置领取相应奖品.根据这个信息,请思考:问题 1:你能否把学生完成答题时可能出现的情况用数学算式表示出来?-6-5-4-3-2-10123456(学生思考,允许互相讨论)让学生展示列出的算式,然后用动画选择演示.问题 2:这些式子有何特点?可以把它们分类吗?结合算式要求学生填空.问题:考虑有理数的运算结果时,既要考虑它的符号,又要考虑它的_.学生思考并回答.3.规律总结与应用结合算式和学生一起归纳出有理数加法法则,教师投影显示规律:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)异号两数相加,绝对值相等时和为 0;绝对值不相等时,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值.(3)一个数同 0 相加,仍得这个数.如何运用法则来进行有理数加法运算?例计算:(1)(8)(5);(2)(2.5)(2.5);1113(3)(2)(3);(4)(2)(4).解:(1)(8)(5)(85)13.(2)(2.5)(2.5)0.11111(3)(2)(3)(23)6.13135(4)(2)(4)(24)4.注意:在讲解例题时,先定符号再算绝对值.尝试练习:1.计算:(1)15(22);(2)(13)(8);12(3)(0.9)1.5;(4)2(3).2.用算式表示下面的结果:(1)温度由4上升到 7.(2)收入 7 元,又支出 5 元.三、运用新知,解决问题A 类:口答:(1)(4)(7);(2)(4)(7);(3)7(4);(4)4(4);(5)9(2);(6)(9)2;(7)(9)0;(8)0(3).B 类:1.计算:(1)5(24);(2)(13)(13);(3)(0.9)1.8;(4)2.7(3.5);(5)(28)37;(6)(13)0.2.土星表面的夜间平均气温是150 摄氏度,白天比夜间高 27 摄氏度,那么白天的平均气温是多少?C 类:飞机的飞行高度是 1000 米,上升 300 米,又下降 500 米,这时飞行高度是多少?点评:B 类第 1 题(1)(3)(5)都是绝对值不相等的异号两数相加,取绝对值较大加数的符号,在计算结果时,一定要先定符号,再算绝对值.C 类:(提示)先算上升到什么高度,再算下降到什么高度?第一步:10003001300(米).第二步:1300(500)800(米).四、课堂小结,提炼观点.先让学生自己小结,然后老师小结:1.有理数加法法则.2.特别提示:绝对值不相等的异号两数相加,一定要先定符号,再算绝对值.五、布置作业,巩固提升教材第 22 页习题 A 组第 1,2 题.(选做题)教材第 23 页 B 组第 1,2 题.课外思考:请你联系生活和生产实际,给数学式子(5)(3)赋予不同的意义,提出尽可能多的问题并解答.【教学小结】【板书设计】1.5.1加法法则1.有理数加法法则2.运算时先定符号再算绝对值第2课时加法运算律【教学整体设计】【教学目标】1 1.正确理解加法交换律、结合律,能用字母表示运算律的内容.2 2.能运用运算律熟练地进行加法运算.3 3.体验加法交换律、结合律在实际运算中的应用.4 4.能运用有理数的加法解决问题.【重点难点】重点:1.1.了解加法交换律、结合律的内容,运用运算律进行加法运算.2 2.运用有理数的加法解决问题.难点:运用有理数的加法解决问题.【教学过程设计】教学过程一、创设情境,导入新课师投影出示练习,计算:设计意图通过对练习的观察、比1.(1)5(13),(13)5;(2)(4)(8),(8)(4).2.(1)8(5)(4),8(5)(4);(2)(6)(12)15,(6)(12)15.学生独立完成后交流.二、师生互动,探究新知1.探索加法交换律、结合律.较,引入加法交换律和结合律的内容.通过学生师:观察第一组两题,比较它们有什么异同点.的观察、比较、观察第二组两题,比较它们有什么异同点.讨论与归纳,感学生讨论归纳,师生共同归纳得出加法交换律、受运算律的意结合律的内容,并用字母表示.义和作用.2.运用规律解决问题.师出示教材例 3.通过尝试先让学生按照从左到右的顺序进行计算.运用运算律解学生独立完成,之后师生共同分析运用加法交决问题,体验利换律和结合律进行计算,教师要给出规范完整的过用运算律对运程,让学生看清楚听明白,从中体会、认识运算律算过程的简化,的作用.加深对运算律3.练习.的理解和巩固.教材第 25 页练习第 1 题.学生独立完成,然后进行交流,教师可安排学生板演,从中发现学生对运算律的理解和掌握程度.师出示教材例 4.学生板演,其他学生订正.三、运用新知,解决问题师投影展示教材第 25 页练习第 3 题.学生独立解决.(一般来说学生会直接进行计算,不会想到第二种解法,在学生完成以后教师再提出以下问题)它们的和是不是最终的结果呢?学生讨论后解决.教师在这一过程中应当关注学生能否理解这种解法,学生在计算中能否自觉运用运算律解决问题.根据情况可对这一题和这种解法进行板书或讲解.通过小结四、课堂小结,提炼观点谈谈你对本节课知识的收获.使学生对本节课的知识有一个系统的认识与回顾.五、布置作业,巩固提升教材第 2526 页习题 A 组第 1,2,3 题.【教学小结】【板书设计】1.5.2加法运算律1.加法交换律2.加法结合律3.练习1.61.6有理数的减法有理数的减法【教学整体设计】【教学目标】1 1.经历探索有理数减法法则的过程,理解有理数减法法则,并熟练运用法则进行有理数的减法运算.2 2.经历由特例归纳出一般规律的过程,培养学生的抽象概括能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想.3 3.通过师生互动,问题探讨等形式,激发学生的学习兴趣,培养学生学习数学的热情.【重点难点】重点:有理数的减法法则.难点:对有理数的减法法则的探究.【教学过程设计】教学过程一、创设情境,导入新课设计意图创设情境,课件展示教材中的天气预报图示.温度计中激发学生兴趣.温度的变化.学生观看课件.二、师生互动,探究新知1.探索法则(1)问题:杭州这一天的温差是多少?你是如何在学生讨得出的?论过程中,教师学生先独立思考,再小组讨论后回答.应在各组之间(2)课件出示教材第 27 页中 1,2,3 题,并提出进行巡视,注意问题:你能得出什么结论?观察每个学生由学生独立完成,四人小组内进行互评,在完的表现,对那些成习题后,由学生独立思考,然后再在本组之内交缺乏讨论积极流各自的看法、结论,小组成员互相讨论、合作、性、主动性的小归纳出问题的结论.组和学生,教师2.总结法则应调动其学习在学生发言的基础上与学生一起总结出法则,兴趣,有必要的并板书.话,教师应亲自举例巩固法则.参与这些小组学生独立思考,模仿教师范例,其余学生进行的讨论.帮助.四人小组进行组内交流合作,完成其余小题.3.例题(1)教材例 1,教师示范(1)(2)题,其余让学生自主完成.(2)教材例 2.(3)教材第 29 页习题 A 组第 3 题作为例 3.(例 1)学生独立思考口答此题.通过特例(例 2)四人小组进行组内讨论、交流、合作,口 归纳出一般规答此题.课件演示例 3 题意,鼓励学生积极思考,大胆发言.学生自主思考几分钟后,再进行组内讨论,发表各自意见,最后组内汇总,回答问题.培养学生三、运用新知,解决问题教材第 28 页练习第 1,2.独立思考的习惯,熟练运用法则.四、课堂小结,提炼观点分组讨论本节课学习过的内容,用自己的语言总结概括.五、布置作业,巩固提升教材第 29 页习题 A 组第 1,2,4 题.【教学小结】【板书设计】锻炼其总结概括能力,培养表达能力.巩固所学知识.律的过程,培养学生的抽象概括能力及口头表达能力.1.6有理数的减法1.探索法则2.总结法则3.例题1.71.7有理数的加减混合运算有理数的加减混合运算【教学整体设计】【教学目标】1 1.熟练掌握有理数的加法和减法运算法则.2 2.能进行有理数的加减混合运算,培养学生的计算能力.3 3.通过对有理数的加减混合运算的学习,体验数学中的转化思想.4 4.通过学习有理数的加减混合运算,培养学生认真、细致的计算习惯.【重点难点】重点:有理数的加减混合运算.难点:将加减法统一成加法的省略括号的形式并读出来.【教学过程设计】教学过程一、创设情境,导入新课设计意图通过生活师出示问题:一个冬天的早晨,气温只有7,中的现象和问中午的气温上升了 11,到了半夜又下降了 9,那么半夜的温度是多少?题引入有理数的混合运算引学生列出算式:7(11)(9).起学生的兴趣,培养学生的学习热情.二、师生互动,探究新知师:这个问题中既有加法也有减法,怎样进行运算?学生讨论后回答,师生共同归纳得出结论.教师出示教材引例:2012 年 1 月 22 日,哈尔滨市的最低气温是25,最高气温是16,北京市的最低气温是11,并且哈尔滨市的温差比北通过对有京市的温差大 1.理数的加减混提出问题:哈尔滨市的温差是多少?合运算的探讨,北京市的温差是多少?学生掌握有理北京市的最高气温是多少?数的加减混合学生思考、讨论交流.运算的方法.教师点拨:在进行有理数的加减混合运算时,常利用加法的交换律和结合律简化运算.师生共同完成此例,教师要给学生一个规范的解题过程和完整的思路分析.这一过程中要注意与前边知识的结合,将加减法统一成加法,然后还要考虑运算律的应用.教师布置学生自主学习教材第 3132 页的内容,并让学生探讨以下问题:1.怎样将一个加减混合运算的式子写成省略加号和括号的形式?2.将一个式子写成省略加号和括号的形式后,应该怎样读?学生讨论交流后回答.三、运用新知,解决问题出示教材例题:173计算:(1)3492;(2)0.25884.提出问题:怎样计算比较便捷?学生思考、讨论,交流解答.教师归纳总结.解:(1)3492(39)(42)1266.173(2)0.25884117348841317(44)(88)121112.注意:运用加法交换律交换加数的位置时,要连同前面的符号一起交换.练习:将下列式子写成省略加号和括号的形式并读出来.(1)(20)(3)(5)(7);(2)(5)(3)(7)(2).学生独立完成后同学间交流,教师安排两名学生到黑板上板演.巩固所学的知识,加深对四、课堂小结,提炼观点加减混合运算谈谈你对有理数的加减混合运算的认识.方法的理解,进一步培养学生的计算能力.五、布置作业,巩固提升教材第 3233 页习题 A 组第 1,2,3 题.【教学小结】【板书设计】1.7有理数的加减混合运算1.例题2.利用运算律简化加减混合运算3.省略加号和括号的写法和读法1.81.8有理数的乘法有理数的乘法第第 1 1 课时课时 有理数乘法法则有理数乘法法则【教学整体设计】【教学目标】1 1.使学生在了解有理数乘法意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性.2 2.经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜想、验证等能力.【重点难点】重点:运用有理数乘法法则正确进行计算.难点:有理数乘法法则的探索过程,以及对法则的理解.【教学过程设计】教学过程设计意图一、创设情境,导入新课通过测量某学校实验楼的楼梯得知,每一级台通过问题阶的高都是 15cm.现在规定:一楼大厅地面的高度为引入课题,引起0cm,从一楼大厅往楼上方向为正方向,从一楼大厅学生的探究欲往地下室方向为负方向.望和学习兴趣,小亮从一楼大厅向楼上走 1,2,3,4 级台阶时,激发学习热情.他所在的高度分别为多少?今天我们就一起来探究“有理数的乘法”.二、师生互动,探究新知(一)探究与发现教师出示问题,学生思考、交流后解答.1.请在下面的横线上分别填写小亮从一楼大厅向上走 1,2,3,4 级台阶时,他所在的高度:通过对有理数乘法法则的探究,培养学生的自主探究能力,同时加深151_(cm);152_(cm);学生对乘法法153_(cm);154_(cm).则的理解.2.大华从一楼大厅向地下室走 1,2,3,4 级台阶时,他所在的高度:(15)1_(cm);(15)2_(cm);(15)3_(cm);(15)4_(cm).3.比较上面两组算式,当两数相乘时,如果把一个因数换成它的相反数,那么它们的乘积有什么关系?4.根据你的发现,猜想以下各式的结果:(15)(1)_;(15)(2)_;(15)(3)_;(15)(4)_.教师归纳总结.通过探究我们发现:两数相乘,把一个因数换成它的相反数,所得的积应为原来的积的相反数.例如:于是应该有(15)(3)45.此外,当有一个因数是 0 时,积也是 0.如 1500,0(15)0.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同 0 相乘,仍得 0.(二)例题教学出示教材第 35 页例 1.计算:(1)(3)7;(2)0.1(100);111(3)(6)(6);(4)(2)(3).学生思考,回顾乘法法则,教师解答.解:(1)(3)7(37)(异号得负,绝对值相乘)21.(2)0.1(100)(0.1100)10.1(3)(6)(6)1(66)(同号得正,绝对值相乘)1.11111(4)(2)(3)(23)6.(三)倒数的概念如果两个有理数的乘积是 1,那么我们称这两个有理数互为倒数,其中一个数称为另一个数的倒数.提问:请举例说明互为倒数的两个数.学生思考讨论回答.教师归纳总结.一个正数的倒数是正数,一个负数的倒数是负数.三、运用新知,解决问题教材第 36 页练习第 1,2,3 题.四、课堂小结,提炼观点这节课你有哪些收获?还有什么疑问?五、布置作业,巩固提升教材第 37 页习题 A 组第 1,2 题.【教学小结】【板书设计】1.8.1有理数乘法法则1.有理数乘法法则2.倒数的概念第 2 课时乘法运算律【教学整体设计】【教学目标】1 1.使学生掌握多个有理数相乘的符号法则.2 2.掌握有理数乘法的运算律,并利用运算律简化乘法运算.3 3.培养学生观察、归纳、概括及运算能力.【重点难点】重点:有理数乘法的符号法则和运算律.难点:积的符号的确定.【教学过程设计】教学过程一、创设情境,导入新课1.提出问题计算(5)89.2(2)的过程能否使用简便方法,这样做有没有依据,小学里学的运算律在有理数中是否适用?通过问题2.导入运算律情境的引入,学(1)通过计算8(4),(4)8,比较结果生的主动探究,得出 8(4)(4)8.激发学生的学(2)用文字语言归纳乘法交换律:两个数相乘,习兴趣和探究交换因数的位置,积相等.欲望,引导学生(3)用公式的形式表示为:abba.这里的 a,b温故而知新,引表示有理数.入运算律.(4)分组计算,比较3(4)(5)与 3(4)(5)的结果,讨论、归纳出乘法结合律.(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式.(6)分组计算、比较 53(7)与 53设计意图5(7)的结果,讨论归纳出乘法分配律.(7)全班交流,规范分配律的两种表现形式:文字语言、公式形式.二、师生互动,探究新知例题教学1.教师出示例 4.231计算:(24)(3412).(用两种方法计算)师生共同完成.练习:教材第40 页练习第 3 题,教师可布置学生板演、小组交流等,发现学生的问题,及时反馈.2.教师出示投影.计算以下各题,并观察其结果的符号情况.2345234(5)23(4)(5)2(3)(4)(5)(2)(3)(4)(5)0(2)(3)(4)(5)几个不等于 0 的数相乘,你发现结果的符号与哪些因素相关?几个数相乘,如果其中一个因数是0,结果又是多少?通过对例题的讲解和练习的解答,学生能自觉地去运用运算律解决问题.通过探究多个有理数的乘法运算规律,培养学生的观察、归纳能力.学生讨论、交流、归纳结果,师生共同得出教材第 40 页的归纳(即黑体字部分),同时完成教材第40 页练习第 1 题.三、运用新知,解决问题通过例题1.教师出示例 3.和练习,学生初先确定符号,再用运算律,师生共同完成.教师步尝试运用多注意讲解归纳方法:先确定积的符号,然后再把它个有理数的运们的绝对值相乘.算规律进行运2.练习:教材第 40 页练习第 2 题.算.学生分组练习,板演,互相纠错与全班纠错相结合,注意提示学生对方法的运用.四、课堂小结,提炼观点本节课学到了什么?小组内交流总结.五、布置作业,巩固提升教材第 4041 页习题 A 组第 1,2 题,B 组第 1题.【教学小结】【板书设计】1.8.2乘法运算律1.乘法运算律(1)交换律(2)结合律(3)分配律2.例题教学1.91.9有理数的除法有理数的除法【教学整体设计】【教学目标】1 1.理解有理数的除法法则,会进行有理数的除法运算.2 2.经历有理数除法法则的探索过程,培养学生用类比和转化的思想方法解决问题.3 3.通过观察、归纳、推断可以获得数学猜想,体验数学活动中的探索性和创造性,培养学生观察、归纳、概括及运算能力.【重点难点】重点:有理数除法法则.难点:1.1.对除法法则的理解运用,商的符号的确定.2 2.0 不能做除数的理解.【教学过程设计】教学过程一、创设情境,导入新课课件显示:有一登山队计划攀登一座高山,为做充分准备,他们打听到这样一个信息,这座山的山顶气温每隔一小时就下降 3,如果开始温度是设计意图创设问题情境,激发学生兴趣,既复习上节有理数的乘10,他们 4 小时可以登上山顶,那么他们需带御寒的衣服吗?二、师生互动,探究新知1.探索法则(1)上述问题你是如何解决的?(3412,10122,山顶温度是2,因此需带衣服.)法,又让学生体会到数学与生活的联系.说明:若学生列出 3412,回答下降 12,则引导学生:下降 3通常如何表示?(2)如果山顶温度一共下降 12,那么他们登上山顶需用多长时间?说出做法和依据,鼓励学生大胆发表各自的做法.(12(3)4.)(3)合作探究:教材第 42 页“试着做做”,先让学生自主完成,再在小组内

    注意事项

    本文(【冀教版】七年级数学上册全册教案合集.pdf)为本站会员(赵**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开