五年级上册数学总复习.doc
五年级上册数学总复习所有的知识点整 第一单元 倍数与因数(我们只在自然数(0除外)范围内研究倍数和因数。) 1、像0、1、2、3、4、5、6这样的数是自然数。 2、像-3、-2、-1、0、1、2、3这样的数是整数。3、整数与自然数的关系:整数包括自然数。 4、倍数和因数: 举例如4×520,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。 5、找倍数:从1倍开始有序的找。 6、一个数倍数的特点: 一个数的倍数的个数是无限的; 最小的倍数是它本身; 没有最大的倍数。 7、找因数:找一个数的因数,一对一对有序的找较好。 8、一个数因数的特点: 一个数的因数的个数是有限的; 最小的因数是1; 最大的因数是它本身。 9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数。 10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。 按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数 11、5的倍数的特征:个位是0或5的数是5的倍数。 12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是 3 的倍数。 13、既是2的倍数又是5的倍数的特征:个位是0的数。 既是2的倍数又是3的倍数的特征:个位是0、2、4、6、8的数; 各个数位上的数字的和是3的倍数 既是3的倍数又是5的倍数的特征:个位是0或5的数; 各个数位上的数字的和是3的倍数 既是2的倍数又是3的倍数还是5的倍数的特征: 个位是0的数; 各个数位上的数字的和是3的倍数 9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数 14、质数:一个数只有1和它本身两个因数,这个数叫质数。最小的质数是2,是唯一的质数中的偶数。 100以内的质数:15、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。 1既不是质数也不是合数,最小的合数是4. 16、按一个数的因数个数分,自然数可以分为三类。 第二单元 图形的面积(一) 1、 长方形周长=(长+宽)×2 C = 2 ( a + b ) 2、 长方形面积=长×宽 S = a b 3、 正方形周长=边长×4 C = 4 a 4、 正方形面积=边长×边长 S = a 2 5、 平行四边形面积=底×高 S = a h 6、 平行四边形底=面积÷高 a = S ÷ h 7、 平行四边形高=面积÷底 h = S ÷ a 8、 三角形面积=底×高÷2 S = a h ÷ 2 9、 三角形底=面积×2÷高 a = 2 S ÷ h 10、 三角形高=面积×2÷底 h = 2 S ÷ a 11、 梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2 12、 梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b ) 13、 梯形上底=梯形面积×2÷高-下底 a = 2 S ÷ h - b 14、 梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a 15、 1平方千米=100公顷=平方米 16、 1公顷=10000平方米 17、 1平方米=100平方分米=10000平方厘米 第三单元 分数 1、 分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。 2、 分母:表示平均分的份数。分子:表示取出的份数。 3、 分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做 分数。表示其中的一份的数,叫做这个分数的分数单位。 4、 真分数:分子小于分母的分数叫做真分数。真分数小于1。 5、 假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。 6、 带分数:由整数和真分数组成的分数叫做带分数。 7、 假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。 8、 整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。 9、 带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。 10、 质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。 11 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如122×2×3 12、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。 13 互质:两个数的公因数只有1,这两个数叫做互质。 互质的规律: (1) 相邻的自然数互质; (2) 相邻的奇数都是互质数; (3) 1和任何数互质; (4) 两个不同的质数互质 (5) 2和任何奇数互质。 质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9. 14、 几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。 15、 求最大公因数,最小公倍数的方法 关系 最大公因数 最小公倍数 倍数关系 较小数 较大数互质关系 1 他们的乘积 一般关系 短除法 短除法 16、 分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的 分数是最简分数。 17、 约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过 程叫做约分。计算结果通常用最简分数表示。 18、 通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数 做分数的分母较简便。 19、 如何比较分数的大小: 分母相同时,分子大的分数大; 分子相同时,分母小的分数大; 分子分母都不同时,通分再比。 20、 分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分 数大小不变。 21、分数的意义两种解释:把单位“1”平均分成4份,表示这样的3份。 把3平均分成4份,表示这样的1份。 数学与交通: 1 相遇问题: 基本公式:一个人走:速度×时间=路程 两个人同时相对而行:速度和×相遇时间=两人共走路程 甲走的路程+乙走的路程=两人共走的路程 2、旅游费用: 购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选 择一种方案购票或几种方案结合起来购票。若只有A、B两种方案是,只要选择 其中一种价格便宜的就行。 租车问题: 用列表法解决问题。两个原则:多用单价低的,少空座。 3、看图找关系: 读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么。 在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行驶;线往下画,说明减速。 在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明 原地不动;线往下画,说明又从终点回到某地。 第四单元 分数加减法 1, 异分母分数加减法:先通分,化成同分母分数,然后按照同分母分数加减法法则进行计算。 2, 对计算结果的要求:能约分的要约成最简分数,是假分数要化成带分数。 3, 分数化成小数的方法:用分子除以分母,除不尽的保留两位小数。 4, 小数化成分数的方法:看小数部分有几位,就在1的后面加几个0做分母,去掉小数点做分子,能约分的要约分。 第五单元 图形的面积(二) 1, 求组合图形面积的方法: (1) 分割法:将图形进行合理分割,形成基本图形,基本图形面积的和就是组合图形的面积。(和法) (2) 添补法:将图形所缺部分进行添补,组成几个基本图形,基本图形面积-添补图形面积=组合图形面积。 2.不规则图形面积的估算: (1)数格子的方法。 (2)把不规则图形看成近似的基本图形,估算出面积。 鸡兔同笼: 1, 列表法。 2, 假设法 3, 列方程 第六单元 可能性大小 1, 用1表示事件一定发生,用0表示事件一定不会发生,用分数表示可能性的大小。 2, 设计活动方案。 铺地砖: 1, 地面面积除以每块地砖面积=所铺地砖块数 2, 每平方米所需地砖块数乘以地面面积=所铺地砖块数 3, 列方程 4, 注意:转化单位,结果不是整块数用进一法取近似值