欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    曲边梯形的面积精品文稿.ppt

    • 资源ID:52422825       资源大小:1.78MB        全文页数:13页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    曲边梯形的面积精品文稿.ppt

    曲边梯形的面积第1页,本讲稿共13页这些图形的面积该怎样计算?说教学设想第2页,本讲稿共13页 曲边梯形的概念:如图所示,我们把曲边梯形的概念:如图所示,我们把由直线由直线x=a,x=b(ab),y=0 x=a,x=b(ab),y=0和曲线和曲线y=f(x)y=f(x)所所围成的图形称为曲边梯形围成的图形称为曲边梯形 abf(a)f(b)y=f(x)xyO如何求曲边梯形的面积?第3页,本讲稿共13页 例题(阿基米德问题):求由抛物线例题(阿基米德问题):求由抛物线y=xy=x2 2与直线与直线x=1,y=0 x=1,y=0所围成的平面图形的面积所围成的平面图形的面积 Archimedes,约公元前287年约公元前212年问题问题1 1:我们是怎样计算:我们是怎样计算圆的面积的?圆周率是圆的面积的?圆周率是如何确定的?如何确定的?问题问题2 2:“割圆术割圆术”是怎是怎样操作的?对我们有何样操作的?对我们有何启示?启示?第4页,本讲稿共13页1.5.1曲边梯形的面积曲边梯形的面积直线直线x 0、x 1、y 0及曲线及曲线y x2所围成的图形(曲边梯形)面所围成的图形(曲边梯形)面积积S是多少?是多少?x yO1方案方案1方案方案2方案方案3为了计算曲边梯形的面积为了计算曲边梯形的面积S,将它分割成许多小曲边梯形,将它分割成许多小曲边梯形对任意一个小曲边梯形,用对任意一个小曲边梯形,用“直边直边”代替代替“曲边曲边”(即在很小(即在很小范围内以直代曲),有以下三种方案范围内以直代曲),有以下三种方案“以直代曲以直代曲”。第5页,本讲稿共13页解题思想“细分割、近似和、渐逼近”下面用第一种方案下面用第一种方案“以直代曲以直代曲”的具体操作过程的具体操作过程第6页,本讲稿共13页(1)分割)分割把区间把区间0,1等分成等分成n个小区间:个小区间:过各区间端点作过各区间端点作x轴的垂线,轴的垂线,从而得到从而得到n个小曲边梯形,个小曲边梯形,他们的面积分别记作他们的面积分别记作每个区间长度为每个区间长度为第7页,本讲稿共13页(2)以直代曲以直代曲(3)作和)作和第8页,本讲稿共13页(4)逼近)逼近分割分割以曲代直以曲代直作和作和逼近逼近第9页,本讲稿共13页第10页,本讲稿共13页例题:求由抛物线例题:求由抛物线y=xy=x2 2与直线与直线x=0,x=1,y=0 x=0,x=1,y=0所围成的平面图形的所围成的平面图形的面积面积 练习练习:试以区间右端点的函数:试以区间右端点的函数值作高,近似、求和、取极限,值作高,近似、求和、取极限,计算此时曲边梯形的面积计算此时曲边梯形的面积 解:如果取如果取(i-1)/n,i/n(i-1)/n,i/n内任意点内任意点i i的函数值的函数值f(f(i i)作为小矩形的高,作为小矩形的高,以此近似,情况又怎样呢?以此近似,情况又怎样呢?第11页,本讲稿共13页求曲边梯形面积的求曲边梯形面积的“四步曲四步曲”:11分割分割化整为零化整为零22近似代替近似代替以直代曲以直代曲33求和求和积零为整积零为整44取极限取极限刨光磨平刨光磨平第12页,本讲稿共13页说真情实感第13页,本讲稿共13页

    注意事项

    本文(曲边梯形的面积精品文稿.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开