专升本高等数学测试题(答案)(最新整理).pdf
专升本高等数学测试题专升本高等数学测试题1.函数y 1sin x是(D)(A)奇函数;(B)偶函数;(C)单调增加函数;(D)有界函数解析解析因为1 sin x 1,即0 1sin x 2,所以函数y 1sin x为有界函数2.若f(u)可导,且y f(e),则有(B);(A)dy f(e)dx;(C)dy f(e)e dx;xxxxx(B)dy f(e)e dx;(D)dy f(e)e dxxxxxx解析解析y f(e)可以看作由y f(u)和u e复合而成的复合函数由复合函数求导法所以3.y f(u)ex f(u)ex,dy ydx f(ex)exdx0exdx=(B );(A)不收敛;(B)1;(C);(D)0.00解析解析exdx exx 0114.y2y y (x1)e的特解形式可设为(A);(A)x(axb)e;(C)(axb)e;2x2x(B)x(axb)e;(D)(ax b)x2xx2解析解析特征方程为r 2r 1 0,特征根为r1=r2=1=1 是特征方程的特征重根,于是有yp x(axb)e5.Dx2 y2dxdy(C),其中D:1x2 y24;(A)(C)2020dr2dr;14(B)(D)2020drdr;14dr2dr;12drdr12解析解析此题考察直角坐标系下的二重积分转化为极坐标形式当x rcos22时,dxdy rdrd,由 于1x y4,D表 示 为1 r 2,0 2,故y rsinDx2 y2dxdy rrdrdD20dr2dr126.函数y=x arcsin(1)的定义域23 x21解解由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小于等于 1.可建立不等式组,并求出联立不等式组的解.即3 x 0,3 x2 0,x1 1,2推得3 x 3,0 x 4,即0 x 3,因此,所给函数的定义域为0,3).7.求极限lim2x 2=x22 x解:解:原式=lim(2 x 2)(2 x 2)x2(2 x)(2 x 2)1x22 x 2=lim=1.(恒等变换恒等变换之后“能代就代能代就代”)4=8.求极限limx1x1sin tdt1cos x解:解:此极限是“0”型未定型,由洛必达法则,得0=limx1limx1x1sin tdt(sin tdt)1x1cos x(1cos x)=limsin x11 lim()x1 sin xx19.曲线x t,在点(1,1)处切线的斜率3y t,1 t,t 1,31 t,解:由题意知:dydxt1(t3)(t)t1 3t2t1 3,曲线在点(1,1)处切线的斜率为 310.方程y2yy 0,的通解为解:解:特征方程r 2r 1 0,特征根r1 r21,通解为y (C1C2x)e.x211.交错级数(1)n11n1n(n 1)的敛散性为(4)(1)n11=n1n(n 1)1,n1n(n 1)而级数11)收敛,故原级数绝对收敛.n1n(n 12.lim(11xx2)x.(第二个重要极限第二个重要极限)解一解一原式=limx(11x)x(11x)x lim1x1x11x0(1x)limx(1x)=ee1,1解二解二原式=lim1(x2)(x)0 x(1x2)=e 113.lim1x0 x1x2ln(1 x)解 所求极限为 型,不能直接用洛必达法则,通分后可变成00或型.limx ln(1 x)111 xx0 x2 limx02x lim1 x 111x02x(1 x)limx02(1 x)2.14.设f(x)xex,求f(x).解:解:令y xex,两边取对数得:ln y exln x,两边关于x求导数得:1yy e ln x exxxy(exln x exyx)即y xex(exln x exx).15.求f(x)x3+3x2在闭区间5,5上的极大值与极小值,最大值与最小值.解:解:f(x)3x26x,令f(x)0,得x1 0,x2 2,f(x)6x 6,f(0)6 0,f(2)6 0,f(x)的极大值为f(2)4,极小值为f(0)0.limx01x1x2ln(1 x)f(5)50,f(5)200.比较f(5),f(2),f(0),f(5)的大小可知:f(x)最大值为 200,最小值为50.16.求不定积分111 xdx.2解:解:令1 x t,则x t 1,dx 2tdt,于是原式=2tt 11dtdt2dt2 dt=1t1t1t=2t 2ln1t C=2 1 x 2ln1 1 x C.417.求定积分101xxdx.解解:(1)利用换元积分法,注意在换元时必须同时换限令t x,x t2,dx 2tdt,当x 0时,t 0,当x 4时,t 2,于是1041xxdx=21t42tdt=4 2t dt01t01t2 4t t2 4ln1t20 4 4ln3.18.求方程(exyex)dx(exyey)dy 0的通解;ex(ey1)dx ey(ex1)dy,eyexdy xdx,ey1e 1解解整理得用分离变量法,得两边求不定积分,得于是所求方程的通解为ln(ey1)ln(ex1)lnC,ey1eyC,xe 1即C1ex119.u e sin xy,求xux,(0,1)uy.(1,0)解:解:因u exsin xy excosxy y ex(sin xy ycosxy),xu excosxy x,yuxuy e0(sin0 cos0)1,(0,1)e(cos01)e.(1,0)20.画出二次积分20dy24y22 4y2fx,ydx的积分区域D并交换积分次序.y0 y 2,解:解:D:2224 y x 24 y0 x 4,的图形如右图,由图可知,D也可表为20 y 4x x,O24x所以交换积分次序后,得40dx04xxfx,ydy.221.求平行于y轴,且过点A(1,5,1)与B(3,2,3)的平面方程.解一解一利用向量运算的方法。关键是求出平面的法向量n n.因为平面平行于y轴,所以n n j j.又因为平面过点A与B,所以必有n n AB.于是,取n n=j AB,i ij jk k而AB=2,7,4,所以n n=010=4i i 2k k,27 4因此,由平面的点法式方程,得 4(x 1)0(y 5)2(z 1)0,即2x z 3 0.解二解二利用平面的一般式方程。设所求的平面方程为Ax By Cz D 0,由于平面平行于y轴,所以B 0,原方程变为Ax Cz D 0,又所求平面过点A(1,5,1)与B(3,2,3),AC D 0,将A,B的坐标代入上述方程,得解之得A 2C,D 3C,代入所设方程,故所求平面方程为3A3C D 0,2x z 3 0.“”At the end,Xiao Bian gives you a passage.Minand once said,people who learn tolearn are very happy people.In every wonderful life,learning is an eternal theme.Asa professional clerical and teaching position,I understand the importance ofcontinuous learning,life is diligent,nothing can be gained,only continuous learningcan achieve better self.Only by constantly learning and mastering the latest relevantknowledge,can employees from all walks of life keep up with the pace of enterprisedevelopment and innovate to meet the needs of the market.This document is alsoedited by my studio professionals,there may be errors in the document,if there areerrors,please correct,thank you!