对勾函数讲解与例题解析(共4页).doc
精选优质文档-倾情为你奉上对勾函数对勾函数:数学中一种常见而又特殊的函数。如图一、对勾函数f(x)=ax+ 的图象与性质对勾函数是数学中一种常见而又特殊的函数。它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x)。当a0,b0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)= b/x “叠加”而成的函数。这个观点,对于理解它的性质,绘制它的图象,非常重要。当a,b同号时,f(x)=ax+b/x的图象是由直线yax与双曲线y= b/x构成,形状酷似双勾。故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。如下图所示:a>0 b>0 a<0 b<0对勾函数的图像(ab同号)当a,b异号时,f(x)=ax+b/x的图象发生了质的变化。但是,我们依然可以看作是两个函数“叠加”而成。(请自己在图上完成:他是如何叠加而成的。)对勾函数的图像(ab异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。接下来,为了研究方便,我们规定a>0,b>0。之后当a<0,b<0时,根据对称就很容易得出结论了。(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。利用均值不等式可以得到:当x>0时,。当x<0时,。即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。yXOy=ax(四) 对勾函数的单调性(五) 对勾函数的渐进线由图像我们不难得到:(六) 对勾函数的奇偶性 :对勾函数在定义域内是奇函数,二、均值不等式(基本不等式)对勾的研究离不开。说到均值不等式,其实也是根据得来的。我们都知道,(a-b)20,展开就是a2-2ab+b20,有a2+b22ab,两边同时加上2ab,整理得到(a+b)24ab,同时开,就得到了的公式:a+b2sqrt(ab)。把ax+b/x套用这个公式,得到ax+b/x2sqrt(axb/x)=2sqrt(ab),这里有个规定:当且仅当ax=b/x时取到,解出x=sqrt(b/a),对应的f(x)=2sqrt(ab)。我们再来看看均值不等式,它也可以写成这样:(a+b)/2sqrt(ab),前式大家都知道,是求的公式。那么后面的式子呢?也是平均数的,但不同的是,前面的称为,而后面的则称为,总结一下就是算术平均数绝对不会小于几何平均数。这些知识点也是非常重要的。三、关于求函数最小值的解法1. 均值不等式,当且仅当,即的时候不等式取到“=”。当的时候,2. 法若的最小值存在,则必需存在,即或(舍)找到使时,存在相应的即可。通过观察当的时候,3. 单调性定义设 当对于任意的,只有时,此时单调递增;当对于任意的,只有时,此时单调递减。当取到最小值,4. 复合函数的单调性在单调递增,在单调递减;在单调递增又 原函数在上单调递减;在上单调递增即当取到最小值,四、例题解析: 例1、已知函数,练习:2.已知函数 ,求f(x)的最小值,并求此时的x值.五、重点(窍门)其实对勾函数的一般形式是:f(x)=ax+b/x(a>0)定义域为(-,0)(0,+)值域为(-,-2ab2ab,+)当x>0,有x=根号a,有最小值是2根号a当x<0,有x=-根号a,有最大值是:2根号a对勾函数的解析式为y=x+a/x(其中a>0),它的单调性讨论如下:设x1<x2,则f(x1)-f(x2)=x1+a/x1-(x2+a/x2)=(x1-x2)+a(x2-x1)/(x1x2)=(x1-x2)(x1x2-a)/(x1x2)下面分情况讨论当x1<x2<-根号a时,x1-x2<0,x1x2-a>0,x1x2>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数在(-,-根号a)上是增函数当-根号a<x1<x2<0时,x1-x2<0,x1x2-a<0,x1x2>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数在(-根号a,0)上是减函数当0<x1<x2<根号a时,x1-x2<0,x1x2-a<0,x1x2>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数在(0,根号a)上是减函数当根号a<x1<x2时,x1-x2<0,x1x2-a>0,x1x2>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数在(根号a,+)上是增函数解题时常利用此函数的单调性求最大值与最小值。专心-专注-专业