中文微博情感分析系统LTLAB上海交通大学中德语言技术联.ppt
-
资源ID:52875949
资源大小:375KB
全文页数:12页
- 资源格式: PPT
下载积分:20金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
中文微博情感分析系统LTLAB上海交通大学中德语言技术联.ppt
中文微博情感分析系统LTLAB上海交通大学中德语言技术联 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望简介在本届评测设立的3个评测任务中,LTLAB分别参加了任务1(观点句识别)和任务3(情感要素抽取)。对于任务1:采用了基于分类器的方案,特征抽取时考虑到了多种词性和句法特征。对于任务3:参评系统结合了基于分类器的抽取和基于模板的抽取两种方案,考虑到了词的统计信息和微博特有的话题信息。1.预处理预处理过程主要进行句子的分词、句法分析、以及评价词抽取。鉴于微博文本的特殊性,预处理不直接对整句操作,而是将每个句子划分成四种不同的成分:URL用户名及转发标志:变现为:“+用户名”,或“|+用户名”话题:即一对“#”包裹的非空格字符正常文本信息分词和句法分析分词使用了中科院的分词系统ICTCLAS,句法分析使用了Stanford Parser。为了改善分词效果,评测小组成员从网络和评测样例数据中收集了一部分常用网络用语,加入用户词典中。1.预处理评价词抽取基于评价词词典对词或词组进行匹配分为正面评价词词典和负面评价词词典词典来源由3部分构成:Hownet情感词集合、NTUSD情感词集合、来自网络和评测数据样例的评价词词典加入正则表达式模板,如“丢.1,4的脸”可以匹配“丢我的脸”对于抽取出的评价词,首先设定初始评价极性为词典中的极性;然后向前一个范围内寻找是否含有表否定的词语,如“不”、“没有”等,每找到一个词就对当前评价极性进行一次反转。2.观点句识别基于VFI(Voting Feature Interval)分类器进行二值分类,正例即为观点句:人工标注了评测样例数据作为训练数据。VFI分类器的原理较简单,它假设各维特征独立,每维特征对所有类标识进行投票,每类的得分正比于该类得到的票数。VFI分类器不显式考虑先验概率。由于训练数据不平衡(正例较少),因此有助于提高结果的召回率。下表是我们在小范围数据上使用各种分类器得到的结果。准确率准确率召回率召回率F值值SVM0.7790.7260.7516NB0.7080.7230.7154Tree0.7190.6890.7037VFI0.7480.7760.76172.观点句识别对于微博中的每一句,抽取如下几种特征:基于词性的特征。选取了在观点句中常出现的词性或词性组合作为特征,如:连词个数、代词个数、副词+形容词个数、“不”+形容词个数等等基于标点符号的特征:问号的数量和感叹号的数量句中评价词的个数纯粹表达主观意愿词的个数。评测要求纯粹表达主观意愿的句子不算作观点句。针对这一要求,我们人工收集了一些纯粹表达主观意愿词(如“祝愿”),并将句中该类词的数量作为一个特征根据实验结果,人工调整了个别特征的权重,调低了分类器判分的阈值3.情感要素抽取主要使用基于分类器的方法,辅以基于模板的方法。使用评价对象与评价词间的位置关系判别极性。分类器同样采用VFI分类器。对于一条微博,首先抽取其中的候选评价对象,然后对于微博中的每个观点句,分别判断每个候选评价对象是否是其正确评价对象。对微博m,抽取其中所有候选评价对象对微博中的每一句,分别构建分类实例对每一个分类实例,输出二值结果:true/false3.情感要素抽取候选评价对象抽取有两种情况:句子中长度小于阈值的、句法成分为NN、NR、NP、IP、FW之一的词组;当前话题的关键词之一。使用了两种方法抽取话题关键词:方法一:使用话题中的名词。如“#假和尚搂女子#”,则抽取关键词“和尚”、“女子”方法二:使用话题中的名词词组,以及整个话题。即“假和尚”、“女子”、“假和尚搂女子”第二种方法的评测结果略好于方法一3.情感要素抽取构建分类实例对于每一个候选评价对象t,将其与微博中的每一句s分别组合构成分类实例。系统需要对每个分类实例判断true/false,对应t 是/不是 s的评价对象每个分类实例抽取以下特征:t的句法成分t与s的距离,即t与s间隔的字数。若t在s中,则距离为0;若t在s之前,则为一负值;若t在s之后,则为一正值t是否是话题关键词t是否出现在一对“#”之间t在话题相关微博中出现的频次3.情感要素抽取基于模板的方法评测小组借鉴了史兴等人在COAE 2011论文集中使用的方法,对微博中所有都满足下表的三元组进行抽取成分成分允许的类型允许的类型依存关系依存关系rcmod,nsubj,amod,assmod,nn,vmod评价对象评价对象FW,NR,NT,NN评价词评价词VA,JJ,VV评价对象的极性判别对每个评价对象,在一个窗口范围内寻找最近的评价词,若找到则使用该评价词的极性若窗口内无评价词,则计算句子中正负评价词的个数,以此判断评价对象极性4.总结经验两个任务中都使用到了VFI分类器,在保证准确率变化不大的情况下获得了较高的召回率。构建适合网络语言的分词词表和情感词典较大程度的改善了结果。机器学习方法+后续规则过滤是行之有效的方法。不足评价词抽取采用了较简单的词典匹配的方法,未考虑到上下文人工收集词典的方式过于低效,不利于扩展系统依赖于完整的依存句法分析,速度受到限制,不利于扩展谢谢!