概率高考题(共21页).doc
精选优质文档-倾情为你奉上1.(2008山东文18题)现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组()求被选中的概率;()求和不全被选中的概率2.(2008山东理18题)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响。用表示甲队的总得分。()求随机变量分布列和数学期望;()用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).3.(2009山东文19题)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A轿车B轿车C舒适型100150z标准型300450600按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1) 求z的值. (2) 用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3) 用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.4.(2011山东理11文11) 在区间-1,1上随机取一个数x,的值介于0到之间的概率为( ).(A) (B) (C) (D)5.(2009山东理19题)在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为 0 2 3 4 5 p 0.03 P1 P2 P3 P4 (1) 求q的值;(2) 求随机变量的数学期望E;(3) 试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。6.(2010山东文19题)一个袋中装有四个形状大小完全相同的球,球的编号分别为, ()从袋中随机取出两个球,求取出的球的编号之和不大于的概率; ()先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求的概率。7.(2010山东理8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有(A)36种(B)42种(C)48种(D)54种8.(2010山东理20题)某学校举行知识竞赛,第一轮选拔共设有四个问题,规则如下: 每位参加者计分器的初始分均为10分,答对问题分别加1分、2分、3分、6分,答错任一题减2分; 每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局,当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局; 每位参加者按问题顺序作答,直至答题结束.假设甲同学对问题回答正确的概率依次为,且各题回答正确与否相互之间没有影响.()求甲同学能进入下一轮的概率;()用表示甲同学本轮答题结束时答题的个数,求的分布列和数学的.9. (2011山东文18题)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.10.(2011山东理18)红队队员甲、乙、丙与蓝队队员进行围棋比赛,甲对、乙对、丙对各一盘已知甲胜、乙胜、丙胜的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立. ()求红队至少两名队员获胜的概率; ()用表示红队队员获胜的总盘数,求的分布列和数学期望.11.(2008全国文卷一12)将1,2,3填入的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A6种B12种C24种D48种12331223112.(2008全国文卷一20)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物血液化验结果呈阳性的即为患病动物,呈阴性的即没患病下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止方案乙:先任取3只,将它们的血液混在一起化验若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验求依方案甲所需化验次数不少于依方案乙所需化验次数的概率13.(2008全国文卷二14) 从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)14.(2008全国文卷二19)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2设甲、乙的射击相互独立()求在一轮比赛中甲击中的环数多于乙击中环数的概率;()求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率DBCA15.(2008全国理卷一12) 如图,一环形花坛分成四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A96B84C60D4816.(2008全国理卷一20)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物血液化验结果呈阳性的即为患病动物,呈阴性的即没患病下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止方案乙:先任取3只,将它们的血液混在一起化验若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验()求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;()表示依方案乙所需化验次数,求的期望17.(2008全国理卷二6)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( )ABCD18.(2008全国理卷二18) 购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立已知保险公司在一年度内至少支付赔偿金10 000元的概率为()求一投保人在一年度内出险的概率;()设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)19.(2009全国文卷一7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A)150种 (B)180种 (C)300种 (D)345种20.(2009全国文卷一20)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。()求再赛2局结束这次比赛的概率;()求甲获得这次比赛胜利的概率。21.(2009全国文卷二10)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有(A)6种 (B)12种 (C)24种 (D)30种22.(2009全国文卷二20)某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人。现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名工人进行技术考核。()求从甲、乙两组各抽取的人数;()求从甲组抽取的工人中恰有1名女工人的概率;()求抽取的4名工人中恰有2名男工人的概率。W.w.w.k.s.5.u.c.o.m 23.(2009全国理卷一5)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( D )(A)150种 (B)180种 (C)300种 (D)345种 24.(2009全国理卷一19)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局。 (I)求甲获得这次比赛胜利的概率; (II)设表示从第3局开始到比赛结束所进行的局数,求得分布列及数学期望。25.(2009全国理卷二10)甲、乙两人从4门课程中各选修2门。则甲、乙所选的课程中至少有1门不相同的选法共有A. 6种 B. 12种 C. 30种 D. 36种26.(2009全国理卷二20)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核。(I)求从甲、乙两组各抽取的人数;(II)求从甲组抽取的工人中恰有1名女工人的概率;(III)记表示抽取的3名工人中男工人数,求的分布列及数学期望。27.(2010全国文卷一15)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程各自少选一门,则不同的选法共有 种(用数字作答)28.(2010全国文卷一19,理18)投到某杂志的稿件,先由两位初审专家进行评审若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用设稿件能通过各初审专家评审的概率均为05,复审的稿件能通过评审的概率为03各专家独立评审 (I)求投到该杂志的1篇稿件被录用的概率;(II)文:求投到该杂志的4篇稿件中,至少有2篇被录用的概率 理:记表示投到该杂志的4篇稿件中被录用的篇数,求的分布列及期望29.(2010全国文卷二9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有(A)12种 (B)18种 (C)36种 (D)54种30.(2010全国文卷二20,理卷二20) 如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999()求;()求电流能在M与N之间通过的概率.理:()表示T1,T2,T3,T4中能通过电流的组件个数,求的期望31.(2010全国理卷一6) 某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种 (D)48种32.(2010全国理卷二6) 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种 (B)18种 (C)36种 (D)54种33.(2011全国文卷一9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种34.(2011全国文卷一19) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立. (I)求该地1位车主至少购买甲、乙两种保险中的1种的概率; (II)求该地3位车主中恰有1位车主甲、乙两种保险都不购买的概率.35.(2011全国理7) 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不用的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种36.(2011全国理18)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。()求该地1位车主至少购买甲、乙两种保险中的1种的概率;;()求该地的100位车主中,甲、乙两种保险都不购买的车主数,求X的期望。1. 解:()从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间,由18个基本事件组成由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的用表示“恰被选中”这一事件,则,事件由6个基本事件组成,因而()用表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于,事件有3个基本事件组成,所以,由对立事件的概率公式得2. ()解法一:由题意知,的可能取值为0,1,2,3,且所以的分布列为0123P的数学期望为E=解法二:根据题设可知因此的分布列为()解法一:用C表示“甲得2分乙得1分”这一事件,用D表示“甲得3分乙得0分”这一事件,所以AB=CD,且C、D互斥,又由互斥事件的概率公式得解法二:用Ak表示“甲队得k分”这一事件,用Bk表示“已队得k分”这一事件,k=0,1,2,3由于事件A3B0,A2B1为互斥事件,故事P(AB)=P(A3B0A2B1)=P(A3B0)+P(A2B1).3. 解: (1).设该厂本月生产轿车为n辆,由题意得,所以n=2000. z=2000-100-300-150-450-600=400(2) 设所抽样本中有m辆舒适型轿车,因为用分层抽样的方法在C类轿车中抽取一个容量为5的样本,所以,解得m=2也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S1,S2;B1,B2,B3,则从中任取2辆的所有基本事件为(S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),(B1 ,B2), (B2 ,B3) ,(B1 ,B3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件: (S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),所以从中任取2辆,至少有1辆舒适型轿车的概率为.(3)样本的平均数为,那么与样本平均数之差的绝对值不超过0.5的数为9.4, 8.6, 9.2, 8.7, 9.3, 9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为.4. C【解析】:在区间-1,1上随机取一个数x,即时, 区间长度为1, 而的值介于0到之间的区间长度为,所以概率为.故选C5.解:(1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25, P(B)= q,.根据分布列知: =0时=0.03,所以,q=0.2.(2)当=2时, P1=0.75 q( )×2=1.5 q( )=0.24当=3时, P2 =0.01,当=4时, P3=0.48,当=5时, P4=0.24所以随机变量的分布列为 0 2 3 4 5 p 0.03 0.24 0.01 0.48 0.24 随机变量的数学期望(3)该同学选择都在B处投篮得分超过3分的概率为;该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.由此看来该同学选择都在B处投篮得分超过3分的概率大.6. 解:(I)从袋子中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个。从袋中随机取出的球的编号之和不大于4的事件共有1和2,1和3两个。因此所求事件的概率为1/3。 (II)先从袋中随机取一个球,记下编号为m,放回后,在从袋中随机取一个球,记下编号为n,其一切可能的结果(m, n)有: (1,1)(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1)(3,2), (3,3) (3,4),(4,1) (4,2),(4,3)(4,4),共16个有满足条件n m+2 的事件为(1,3) (1,4) (2,4),共3个所以满足条件n m+2 的事件的概率为 P=3/16故满足条件n<m+2 的事件的概率为7.B8. 解:设分别为第一、二、三、四个问题.用表示甲同学第个问题回答正确,用表示甲同学第个问题回答错误,则与是对立事件.由题意得所以()记“甲同学能进入下一轮”为事件,则()由题意,随机变量的可能取值为:.由于每题答题结果相互独立,所以因此 随机变量的分布列为 所以 ,.9. 解:()设甲校男教师为,女教师为;乙校男教师为,女教师为。从甲校和乙校报名的教师中各任选1名,可能的情况有:(,)、(,)、(,)、 (,)、(,)、(,)、(,)、(,)、(,)共9种情况.3分2名教师性别相同的(,)、(,)、(,)、(,)共4种。选出的2名教师性别相同的概率p=。 .6分(II)从报名的6名教师中任选2名,可能的情况有:(,)、(,)、(,)、(,)、(,)、(,)(,)、(,)、(,)、(,)、(,)、(,)、(,)、(,)、(,)共15种。8分选出的2名教师来自同一学校的情况有:(,)、(,)、(,)、(,)、(,)、(,)共6中, .10分选出的2名教师来自同一学校的概率为p=。.12分10. 解(1)设甲胜的事件为,乙胜的事件为,丙胜的事件为, 则分别表示甲不胜、乙不胜、丙不胜的事件. 因为 , 由对立事件的概率公式知 , 红队至少两人获胜的事件有:, 由于以上四个事件两两互斥且各盘比赛的结果相互独立, 因此红队至少两人获胜的概率为 (2)由题意知可能的取值为0,1,2,3. 又由(1)知是两两互斥时间,且各盘比赛的结果相互独立, 因此 由对立事件的概率公式得 01230.10.350.40.15 所以的分布列为因此 11. B. 解析:先排第一行,有=6种不同方法,然后再排其他两行,每种对应2中不同排法,共有6×2=12种不同排法,选择B; 12.13. 420【解析】14. 解:记分别表示甲击中9环,10环,分别表示乙击中8环,9环,表示在一轮比赛中甲击中的环数多于乙击中的环数,表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数(),2分6分(),8分,12分15. B.分三类:种两种花有种种法;种三种花有种种法;种四种花有种种法.共有.另解:按顺序种花,可分同色与不同色有16. 解:()对于甲:次数12345概率0.20.20.20.20.2对于乙:次数234概率0.40.40.2()表示依方案乙所需化验次数,的期望为17. D【解析】18. 解:各投保人是否出险互相独立,且出险的概率都是,记投保的10 000人中出险的人数为,则()记表示事件:保险公司为该险种至少支付10 000元赔偿金,则发生当且仅当,2分,又,故5分()该险种总收入为元,支出是赔偿金总额与成本的和支出 ,盈利 ,盈利的期望为 ,9分由知,(元)故每位投保人应交纳的最低保费为15元12分19. 解:由题共有,故选择D。20. 解:记“第局甲获胜”为事件,“第局乙获胜”为事件。()设“再赛2局结束这次比赛”为事件A,则,由于各局比赛结果相互独立,故()记“甲获得这次比赛胜利”为事件B,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而,由于各局比赛结果相互独立,故21. C解析:本题考查分类与分步原理及组合公式的运用,可先求出所有两人各选修2门的种数=36,再求出两人所选两门都相同和都不同的种数均为=6,故只恰好有1门相同的选法有24种 。22. 解:(I)由于甲、乙两组各有10名工人,根据分层抽样原理,要从甲、乙两组中共抽取4名工人进行技术考核,则从每组各抽取2名工人。(II)记表示事件:从甲组抽取的工人中恰有1名女工人,则 w.w.w.k.s.5.u.c.o.m (III)表示事件:从甲组抽取的2名工人中恰有名男工人, 表示事件:从乙组抽取的2名工人中恰有名男工人, 表示事件:抽取的4名工人中恰有2名男工人。 与独立, ,且故 23. 解: 分两类(1) 甲组中选出一名女生有种选法; (2) 乙组中选出一名女生有种选法.故共有345种选法.选D24. 分析:本题较常规,比08年的概率统计题要容易。需提醒的是:认真审题是前提,部分考生由于考虑了前两局的概率而导致失分,这是很可惜的,主要原因在于没读懂题。另外,还要注意表述,这也是考生较薄弱的环节。25. 解:用间接法即可.种. 故选C26. (I)这一问较简单,关键是把握题意,理解分层抽样的原理即可。另外要注意此分层抽样与性别无关。(II)在第一问的基础上,这一问处理起来也并不困难。 从甲组抽取的工人中恰有1名女工人的概率(III)的可能取值为0,1,2,3,分布列及期望略。27. 3028. 解: ()记 A表示事件:稿件能通过两位初审专家的评审; B表示事件:稿件恰能通过一位初审专家的评审; C表示事件:稿件能通过复审专家的评审; D表示事件:稿件被录用. 则 D=A+B·C, = = =0.25+0.5×0.3 =0.40.(II)文:记A0表示事件:4篇稿件中没有1篇被录用;A1表示事件:4篇稿件中恰有1篇被录用;A2表示事件:4篇稿件中至少有2篇被录用A0A1.P(A0)(10.4)40.129 6,P(A1)×0.4×(10.4)30.345 6,P()P(A0A1)P(A0)P(A1)0.129 60.345 60.475 2,P(A2)1P()10.475 20.524 8. (II)理:,其分布列为: 期望.29. B30.解:记表示事件:电流能通过A表示事件:中至少有一个能通过电流,B表示事件:电流能在M与N之间通过,()相互独立, ,又 ,故 ,(), =0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9 =0.9891理:()由于电流能通过各元件的概率都是0.9,且电流能通过各元件相互独立。故31A32. B【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.33. B【解析】第一步选出2人选修课程甲有种方法,第二步安排剩余两人从乙、丙中各选1门课程有种选法,根据分步计数原理,有种选法.34. 【解析】记A表示事件:该地的1位车主购买甲种保险:B表示事件:该地的1位车主购买乙种保险但不购买甲种保险。C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买;E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.(I), , 3分 6分(II)D=,P(D)=1-P(C)=1-0.8=0.2, 9分P(E)=. 12分35.B36.解:(1)设该车主购买乙种保险的概率为p,由题意知:,解得。设所求概率为P1,则.故该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8。(2)对每位车主甲、乙两种保险都不购买的概率为。所以X的期望是20人。专心-专注-专业