欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    勾股定理(第二课时)教学设计.docx

    • 资源ID:53060926       资源大小:48.60KB        全文页数:7页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    勾股定理(第二课时)教学设计.docx

    第二课时一、教学目标知识与技能会用勾股定理进行简单的计算。过程与方法1.数形结合,让学生每做一道题都画图形,并写出应用公式的过程或公式的推倒过程,在做题过程中熟记公式,灵活运用。2.分类讨论,让学生画好图后标图,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力情感、态度与价值观树立数形结合的思想、分类讨论思想。培养思维意识,发展数学理念,体会勾股定理的应用价值。二、教学重、难点重点:勾股定理的简单计算。难点:勾股定理的灵活运用。三、教学准备多媒体,作图工具四、教学方法讲练结合五、教学过程 (一)复习回顾,引入新课复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用。预习新知(阅读教材第66至67页,并完成预习内容。)1.在解决问题时,每个直角三角形需知道几个条件?直角三角形中哪条边最长?2.在长方形ABCD中,宽AB为1m,长BC为2m ,求AC的长问题:(1)在长方形ABCD中,AB、BC、AC的大小关系?(2)一个门框的尺寸如图1所示若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?若薄木板长3米,宽1.5米呢?BC1m 2mA若薄木板长3米,宽2.2米呢?为什么? (二)新课教授例1、在RtABC中,C=90°已知a=b=5,求c;已知a=1,c=2, 求b;已知c=17,b=8, 求a;已知a:b=1:2,c=5, 求a;已知b=15,A=30°,求a,c。分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。已知两直角边,求斜边直接用勾股定理。已知斜边和一直角边,求另一直角边,用勾股定理的便形式。已知一边和两边比,求未知边。通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。例2、已知直角三角形的两边长分别为5和12,求第三边。分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。让学生知道考虑问题要全面,体会分类讨论思想。例3、已知:如图,等边ABC的边长是6cm。求等边ABC的高。 求SABC。分析:勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。欲求高CD,可将其置身于RtADC或RtBDC中,但只有一边已知,根据等腰三角形三线合一性质,可求AD=BD=AB=3cm,则此题可解。例4:如图2,一个3米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为2.5米(1)求梯子的底端B距墙角O多少米?(2)如果梯的顶端A沿墙下滑0.5米至C. OBDCACAOBOD算一算,底端滑动的距离近似值(结果保留两位小数)(三)例题讲解例1填空题在RtABC,C=90°,a=8,b=15,则c= 。在RtABC,B=90°,a=3,b=4,则c= 。在RtABC,C=90°,c=10,a:b=3:4,则a= ,b= 。一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。已知直角三角形的两边长分别为3cm和5cm,则第三边长为 。已知等边三角形的边长为2cm,则它的高为 ,面积为 。解:17; ; 6,8; 6,8,10;4或; ,; 例2已知:如图,在ABC中,C=60°,AB=,AC=4,AD是BC边上的高,求BC的长。 解:8;例3已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。解:48。(四)巩固练习1填空题在RtABC中,C=90°,如果a=7,c=25,则b= ;如果A=30°,a=4,则b= ;如果A=45°,a=3,则c= ;如果c=10,a-b=2,则b= ;如果a、b、c是连续整数,则a+b+c= ;如果b=8,a:c=3:5,则c= 。2已知:如图,四边形ABCD中,ADBC,ADDC, ABAC,B=60°,CD=1cm,求BC的长。答案1(1)24;(2) 4;(3) 3;(4) 6; (5)12; (6)10; 2 (五)课堂小结1、进一步了解勾股定理的含义。2、学会利用勾股定理解决简单的问题。3、学着体会数形结合的思想。六、板书设计18.1 勾股定理(2)复习:勾股定理的文字叙述;勾股定理的符号语言及变形。新课教授:在解决问题时,每个直角三角形需知道几个条件?总结运用勾股定理需要注意的问题和方法1、注意事项2、方法:数形结合例题讲解:例1 例2巩固练习:小结:1、了解勾股定理的含义2、利用勾股定理解决简单的问题作业布置:七、课后作业1填空题在RtABC,C=90°,如果a=7,c=25,则b= 。如果A=30°,a=4,则b= 。如果A=45°,a=3,则c= 。如果c=10,a-b=2,则b= 。如果a、b、c是连续整数,则a+b+c= 。如果b=8,a:c=3:5,则c= 。2已知:如图,四边形ABCD中,ADBC,ADDC, ABAC,B=60°,CD=1cm,求BC的长3已知:如图,在ABC中,C=60°,AB=,AC=4,AD是BC边上的高,求BC的长。 4已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。答124; 4; 3; 6; 12; 10; 2 38; 448。八、教学反思荷兰数学教育家赖登塔尔认为,学习数学唯一正确的方法是实现再创造.也就是由学生本人把要学习的东西自己去发现或创造出来,教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生.而课程标准对勾股定理这部分的教学要求与旧大纲的要求不同,课程标准对勾股定理这部分的教学要求是:体验勾股定理的探索过程,会运用勾股定理解决简单的问题勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础.它紧密联系了数学中两个最基本的量数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+ b2= c2)堪称数形结合的典范,在理论上占有重要地位. 另外八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法 . 但是学生对用割补方法和面积计算证明几何命题的意识和能力存在障碍,对于如何将图形与数有机的结合起来还很陌生.基于以上三点的原因,本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识.从而教给学生探求知识的方法,教会学生获取知识的本领.

    注意事项

    本文(勾股定理(第二课时)教学设计.docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开