欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中数学导数练习题(共5页).doc

    • 资源ID:5323606       资源大小:464.50KB        全文页数:5页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中数学导数练习题(共5页).doc

    精选优质文档-倾情为你奉上专题8:导数(文)经典例题剖析考点一:求导公式。例1. 是的导函数,则的值是 。 解析:,所以 答案:3 考点二:导数的几何意义。例2. 已知函数的图象在点处的切线方程是,则 。 解析:因为,所以,由切线过点,可得点M的纵坐标为,所以,所以答案:3例3.曲线在点处的切线方程是 。解析:,点处切线的斜率为,所以设切线方程为,将点带入切线方程可得,所以,过曲线上点处的切线方程为:答案: 点评:以上两小题均是对导数的几何意义的考查。考点三:导数的几何意义的应用。例4.已知曲线C:,直线,且直线与曲线C相切于点,求直线的方程及切点坐标。解析:直线过原点,则。由点在曲线C上,则,。又,在处曲线C的切线斜率为,整理得:,解得:或(舍),此时,。所以,直线的方程为,切点坐标是。答案:直线的方程为,切点坐标是 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。考点四:函数的单调性。例5.已知在R上是减函数,求的取值范围。解析:函数的导数为。对于都有时,为减函数。由可得,解得。所以,当时,函数对为减函数。(1) 当时,。由函数在R上的单调性,可知当是,函数对为减函数。(2) 当时,函数在R上存在增区间。所以,当时,函数在R上不是单调递减函数。综合(1)(2)(3)可知。答案: 点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。考点五:函数的极值。例6. 设函数在及时取得极值。(1)求a、b的值;(2)若对于任意的,都有成立,求c的取值范围。解析:(1),因为函数在及取得极值,则有,即,解得,。(2)由()可知,。当时,;当时,;当时,。所以,当时,取得极大值,又,。则当时,的最大值为。因为对于任意的,有恒成立,所以,解得或,因此的取值范围为。答案:(1),;(2)。 点评:本题考查利用导数求函数的极值。求可导函数的极值步骤:求导数;求的根;将的根在数轴上标出,得出单调区间,由在各区间上取值的正负可确定并求出函数的极值。考点六:函数的最值。例7. 已知为实数,。求导数;(2)若,求在区间上的最大值和最小值。解析:(1),。(2),。令,即,解得或, 则和在区间上随的变化情况如下表:000增函数极大值减函数极小值增函数0,。所以,在区间上的最大值为,最小值为。答案:(1);(2)最大值为,最小值为。 点评:本题考查可导函数最值的求法。求可导函数在区间上的最值,要先求出函数在区间上的极值,然后与和进行比较,从而得出函数的最大最小值。考点七:导数的综合性问题。例8. 设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为。(1)求,的值;(2)求函数的单调递增区间,并求函数在上的最大值和最小值。解析: (1)为奇函数,即,的最小值为,又直线的斜率为,因此,(2)。,列表如下:增函数极大减函数极小增函数所以函数的单调增区间是和,在上的最大值是,最小值是。答案:(1),;(2)最大值是,最小值是。点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。专心-专注-专业

    注意事项

    本文(高中数学导数练习题(共5页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开