欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    第三章 可逆矩阵 第二讲优秀课件.ppt

    • 资源ID:53445237       资源大小:1.07MB        全文页数:17页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第三章 可逆矩阵 第二讲优秀课件.ppt

    第三章 可逆矩阵 第二讲第1页,本讲稿共17页 设A为mn矩阵,当R(A)=m时,称A为行满秩矩阵;当R(A)=n时,称A为列满秩矩阵。若A为n阶方阵,且R(A)=n,则称A为满秩矩阵。它既是行满秩矩阵,又是列满秩矩阵。显然,方阵A可逆的充分必要条件是A为满秩矩阵。若A为n阶方阵,且R(A)n,则称A为降秩矩阵。由此方阵A不可逆的充分必要条件是A为降秩矩阵。非奇异矩阵又称为满秩矩阵,而奇异矩阵又称为降秩矩阵。例如例如 显然,A 为满秩矩阵,而 B 则为降秩矩阵。第2页,本讲稿共17页例例1 求下列矩阵的秩 解解 在A中,容易看出:一个2阶子式 ,A的3阶子式只有一个|A|,经计算可知A,因此R(A).第3页,本讲稿共17页 由于B是一个阶梯形矩阵,其非零行有行,故可知B的所有阶子式全为零。而以三个非零行的第一个非零元素为对角元的阶行列式因此(B)。第4页,本讲稿共17页 3.2 矩阵秩的有关定理矩阵秩的有关定理 定理3.1 对矩阵施行初等变换,其秩不变。推论3.1 等价矩阵有相同的秩。推论3.2 设A为mn矩阵,P是m阶可逆矩阵,Q是n阶可逆矩阵,则R(A)=R(PA)=R(AQ)=R(PAQ).第5页,本讲稿共17页 定理定理3.2 对行满秩矩阵Amn,必有列满秩矩阵B n m,使AB=E.证明证明 当m=n时,定理显然成立。所以只需考虑m n的情况。由R(A)=m,知A中存在m个列,由它们构成的m阶子式|A1|0。A经过适当的列的换法变换可使A1位于A的前m列。即有n阶的可逆矩阵P,使AP=(A1,A2)其中A1为m阶的可逆矩阵。令则显然R(B)=R(A1-1)。于是B为列满秩矩阵,且有第6页,本讲稿共17页 3.3 矩阵秩的求法矩阵秩的求法 例例2设求矩阵的秩 解解 对A作初等行变换,变成行阶梯形矩阵:第7页,本讲稿共17页 因为阶梯形矩阵有3个非零行,所以 R(B)=3。从而R(A)=3。第8页,本讲稿共17页 例例例例3 3 设设求矩阵A及矩阵B=(A|b)的秩。解解 对矩阵B施以初等行变换第9页,本讲稿共17页因此,R(A)=2,R(B)=3.第10页,本讲稿共17页 例例4 设Amn、Bnp,试证R(AB)R(A)+R(B)-n。证明证明 设R(A)=r,则存在m、n阶的可逆矩阵P和Q,使得 将矩阵分块为其中,B1是r p 矩阵,B2是(n-r)p 矩阵。由于所以第11页,本讲稿共17页注意B1是Q-1B去掉n-r行得到的矩阵,而矩阵每去掉一行其秩减1或不变,因此 R(B1)R(Q-1B)-(n-r)=R(B)-(n-r)。从而 R(AB)r+R(B)-n。即 R(AB)R(A)+R(B)-n。显然,在上式中当AB=O时,有公式R(A)+R(B)n。第12页,本讲稿共17页 例例5 设A为n阶方阵(n 2),A*是A的伴随矩阵,试证1)当R(A)=n时,R(A*)=n;2)当R(A)=n-1时,R(A*)=1;3)当R(A)n-1时,R(A*)=0。证明证明 1)当R(A)=n时,即A为满秩矩阵,所以|A*|=|A|n-1 0,从而R(A*)=n。2)当R(A)=n-1时,|A|=0,所以A A*=|A|E=O。由R(A)+R(A*)n,得R(A*)1。又由R(A)=n-1知,A中至少有一个元素的代数余子式不等于零,即A*是非零矩阵,从而R(A*)1,故R(A*)=1。3)当R(A)n-1时,A的每一个n-1阶子式都为零,因而A的所有元素的代数余子式均为零,即A*是零矩阵,故R(A*)=0。第13页,本讲稿共17页例例6 设若秩R(AB+B)=2,求a。解解 因为 AB+B=(A+E)B第14页,本讲稿共17页将所得的矩阵施以初等变换得第15页,本讲稿共17页 由于R(AB+B)=2,所以12a 0。故 a=12。第16页,本讲稿共17页第17页,本讲稿共17页

    注意事项

    本文(第三章 可逆矩阵 第二讲优秀课件.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开