欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    《梁弯曲变形的计算》PPT课件.ppt

    • 资源ID:53447748       资源大小:2.30MB        全文页数:46页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《梁弯曲变形的计算》PPT课件.ppt

    材料力学第7章 弯曲变形的计算材料力学7-1 概述7-2 挠曲线的近似微分方程7-3 用积分法求弯曲变形7-4 用叠加法求弯曲变形7-6 梁的刚度条件及提高梁刚度的措施7-5 简单超静定梁本章主要内容材料力学7-1 概 述材料力学材料力学材料力学7-2 挠曲线的近似微分方程1.1.基本概念基本概念挠曲线方程:挠曲线方程:由于小变形,截面形心在由于小变形,截面形心在x x方向的位移忽略不计方向的位移忽略不计挠度转角关系为:挠度转角关系为:挠曲线挠曲线挠度挠度转角转角挠度挠度w w:截面形心:截面形心在在y y方向的位移方向的位移向上为正向上为正转角转角:截面绕中性轴转过的角度。:截面绕中性轴转过的角度。逆钟向为正逆钟向为正材料力学2.2.挠曲线的近似微分方程挠曲线的近似微分方程推导弯曲正应力时,得到:推导弯曲正应力时,得到:忽略剪力对变形的影响忽略剪力对变形的影响材料力学由数学知识可知:由数学知识可知:略去高阶小量,得略去高阶小量,得所以所以材料力学 由弯矩的正负号规定可得,弯矩的符号与挠曲线由弯矩的正负号规定可得,弯矩的符号与挠曲线的二阶导数符号一致,所以挠曲线的近似微分方程为:的二阶导数符号一致,所以挠曲线的近似微分方程为:由上式进行积分,就可以求出梁横截面的转角和由上式进行积分,就可以求出梁横截面的转角和挠度。挠度。材料力学挠曲线的近似微分方程为:挠曲线的近似微分方程为:积分一次得转角方程为:积分一次得转角方程为:再积分一次得挠度方程为:再积分一次得挠度方程为:材料力学 积分常数积分常数C C、D D 由梁的位移边界条件和光滑连续由梁的位移边界条件和光滑连续条件确定。条件确定。位移边界条件位移边界条件光滑连续条件光滑连续条件 弹簧变形弹簧变形材料力学例例1 1 求梁的转角方程和挠度方程,并求最大转角和最大挠度,求梁的转角方程和挠度方程,并求最大转角和最大挠度,梁的梁的EIEI已知。已知。解解1 1)由梁的整体平衡分析可得:)由梁的整体平衡分析可得:2 2)写出)写出x x截面的弯矩方程截面的弯矩方程3 3)列挠曲线近似微分方程并积分)列挠曲线近似微分方程并积分积分一次积分一次再积分一次再积分一次A AB BF F7-3 用积分法求弯曲变形材料力学4 4)由位移边界条件确定积分常数)由位移边界条件确定积分常数代入求解代入求解5 5)确定转角方程和挠度方程)确定转角方程和挠度方程6 6)确定最大转角和最大挠度)确定最大转角和最大挠度A AB BF F材料力学例例2 2 求梁的转角方程和挠度方程,并求最大转角和最大挠度,求梁的转角方程和挠度方程,并求最大转角和最大挠度,梁的梁的EIEI已知,已知,l=a+b,ab。解解1 1)由梁整体平衡分析得:)由梁整体平衡分析得:2 2)弯矩方程)弯矩方程AC AC 段:段:CB CB 段:段:材料力学3 3)列挠曲线近似微分方程并积分)列挠曲线近似微分方程并积分AC AC 段:段:CB CB 段:段:材料力学4 4)由边界条件确定积分常数)由边界条件确定积分常数代入求解,得代入求解,得位移边界条件位移边界条件光滑连续条件光滑连续条件材料力学5 5)确定转角方程和挠度方程)确定转角方程和挠度方程AC AC 段:段:CB CB 段:段:材料力学6 6)确定最大转角和最大挠度)确定最大转角和最大挠度令令 得,得,令令 得,得,材料力学7-4 用叠加法求弯曲变形 设梁上有设梁上有n n 个载荷同时作用,任意截面上的弯矩个载荷同时作用,任意截面上的弯矩为为M(x)M(x),转角为,转角为 ,挠度为,挠度为w w,则有:,则有:若梁上只有第若梁上只有第i i个载荷单独作用,截面上弯矩为个载荷单独作用,截面上弯矩为 ,转角为,转角为 ,挠度为,挠度为 ,则有:,则有:由弯矩的叠加原理知:由弯矩的叠加原理知:所以,所以,材料力学故故由于梁的边界条件不变,因此由于梁的边界条件不变,因此重要结论:重要结论:梁在若干个载荷共同作用时的挠度或转角,等梁在若干个载荷共同作用时的挠度或转角,等于在各个载荷单独作用时的挠度或转角的代数和。于在各个载荷单独作用时的挠度或转角的代数和。这就是这就是计算弯曲变形的叠加原理计算弯曲变形的叠加原理。材料力学例例3 3 已知简支梁受力如图示,已知简支梁受力如图示,q q、l、EIEI均为已知。求均为已知。求C C 截面截面的挠度的挠度w wC C ;B B截面的转角截面的转角 B B1 1)将梁上的载荷分解)将梁上的载荷分解wC1wC2wC32 2)查表得)查表得3 3种情形下种情形下C C截面的截面的挠度和挠度和B B截面的转角截面的转角。解解材料力学wC1wC2wC33 3)应用叠加法,将简单载荷应用叠加法,将简单载荷作用时的结果求和作用时的结果求和 材料力学例例4 4 已知:悬臂梁受力如图已知:悬臂梁受力如图示,示,q q、l、EIEI均为已知。求均为已知。求C C截面的挠度截面的挠度w wC C和转角和转角 C C1 1)首先,将梁上的载荷变成)首先,将梁上的载荷变成有表可查的情形有表可查的情形 为了利用梁全长承受均为了利用梁全长承受均布载荷的已知结果,先将均布载荷的已知结果,先将均布载荷延长至梁的全长,为布载荷延长至梁的全长,为了不改变原来载荷作用的效了不改变原来载荷作用的效果,在果,在AB AB 段还需再加上集段还需再加上集度相同、方向相反的均布载度相同、方向相反的均布载荷。荷。解解解解材料力学3 3)将结果叠加)将结果叠加 2 2)再将处理后的梁分解为简单)再将处理后的梁分解为简单载荷作用的情形,计算各自载荷作用的情形,计算各自C C截截面的挠度和转角。面的挠度和转角。材料力学7-5 简单超静定梁1.基本概念:基本概念:超静定梁:超静定梁:支反力数目大于有效平衡方程数目的梁。支反力数目大于有效平衡方程数目的梁。多余约束:多余约束:从维持平衡角度而言从维持平衡角度而言,多余的约束。多余的约束。超静定次数:超静定次数:多余约束或多余支反力的数目。多余约束或多余支反力的数目。2.求解方法:求解方法:解除多余约束,建立相当系统解除多余约束,建立相当系统比较变形,列变比较变形,列变形协调条件形协调条件由物理关系建立补充方程由物理关系建立补充方程利用利用静力平衡条件求其他约束反力。静力平衡条件求其他约束反力。相当系统:相当系统:用多余约束力代替多余约束的静定系统。用多余约束力代替多余约束的静定系统。材料力学材料力学例例5:试分析细长轴车削过程中顶尖的作用,已知:工件的抗弯刚度:试分析细长轴车削过程中顶尖的作用,已知:工件的抗弯刚度为为EIZ,切削力为,切削力为F,且作用在零件的中间位置,零件长度为且作用在零件的中间位置,零件长度为l。l/2l/2+解:分析:解:分析:此题属于此题属于1 1次超静定问题。次超静定问题。用变形比较法列出变形比较条件用变形比较法列出变形比较条件其中,其中,解得:解得:FBB(a)ACFC(b)BAFFBFAMAABC材料力学l/2l/2FFBFAMA+用叠加法解得用叠加法解得C处的挠度为:处的挠度为:FC(b)BAFBB(a)AC其中,其中,BA材料力学l/2l/2FFBFAMA+FC(b)BAFBB(a)AC如果没用顶尖的作用,在刀如果没用顶尖的作用,在刀尖作用点处挠度为:尖作用点处挠度为:求得有无顶尖作用时,在刀求得有无顶尖作用时,在刀尖处变形比为:尖处变形比为:结论:可见用顶尖可有效地结论:可见用顶尖可有效地减小工件的变形,因而,在减小工件的变形,因而,在细长轴加工中要设置顶尖,细长轴加工中要设置顶尖,甚至使用跟刀架。甚至使用跟刀架。BA材料力学解解例例6 求梁的支反力,梁的抗弯刚度为求梁的支反力,梁的抗弯刚度为EI。1)判定超静定次数)判定超静定次数2)解除多余约束,建立相当系统)解除多余约束,建立相当系统3)进行变形比较,列出变形协调条件)进行变形比较,列出变形协调条件材料力学4)由物理关系,列出补充方程)由物理关系,列出补充方程 所以所以5)由整体平衡条件求其他约束反力)由整体平衡条件求其他约束反力 材料力学例例7 梁梁AB 和和BC 在在B 处铰接,处铰接,A、C 两端固定,梁的抗弯刚度均为两端固定,梁的抗弯刚度均为EI,F=40kN,q=20kN/m。画梁的剪力图和弯矩图。画梁的剪力图和弯矩图。从从B 处拆开,使超静定结构变成两个处拆开,使超静定结构变成两个悬臂梁。悬臂梁。变形协调方程为:变形协调方程为:FBMMA AF FA AyB1 FBMMC CF FC CyB2物理关系物理关系解解材料力学FB FBMMA AF FA AMMC CF FC CyB1yB2代入得补充方程:代入得补充方程:确定确定A A 端约束力:端约束力:材料力学FB FBMMA AF FA AMMC CF FC CyB1yB2确定确定C 端约束力端约束力材料力学MMA AF FA AMMC CF FC CA、C 端约束力已求出端约束力已求出最后作梁的剪力图和弯矩图最后作梁的剪力图和弯矩图材料力学例例8:结构如图所示,设梁:结构如图所示,设梁AB和和CD的弯曲刚度的弯曲刚度EIz相同,拉杆相同,拉杆BC的拉压刚度的拉压刚度EA为已知,求拉杆为已知,求拉杆BC的轴力。的轴力。解:将杆解:将杆BC移除,则移除,则AB,CD均为静均为静定结构,杆定结构,杆BC的未知轴力的未知轴力FN作用在作用在AB、CD梁上,如图(梁上,如图(b)、()、(c)所)所示。为示。为1次超静定。次超静定。对于对于AB梁:梁:对于对于CD梁:梁:BC杆的伸长:杆的伸长:材料力学补充方程:补充方程:材料力学7-6 梁的刚度条件及提高梁刚度的措施材料力学1.1.刚度条件刚度条件 建筑钢梁的许可挠度:建筑钢梁的许可挠度:机械传动轴的许可转角:机械传动轴的许可转角:精密机床的许可转角:精密机床的许可转角:材料力学 根据要求,圆轴必须具有足够的刚度,以保证轴承根据要求,圆轴必须具有足够的刚度,以保证轴承B B 处处转角不超过许用数值。转角不超过许用数值。B1 1)由挠度表中查得承受集中载荷的外伸梁)由挠度表中查得承受集中载荷的外伸梁B B 处的转角为:处的转角为:解解例例8 8 已知钢制圆轴左端受力为已知钢制圆轴左端受力为F F20 kN20 kN,al ml m,l2 m2 m,E E=206 GPa=206 GPa。轴承。轴承B B处的许可转处的许可转角角 =0.5=0.5。根据刚度要求确。根据刚度要求确定轴的直径定轴的直径d d。材料力学例例7 7 已知钢制圆轴左端受力为已知钢制圆轴左端受力为F F20 kN20 kN,al ml m,l2 m2 m,E E=206 GPa=206 GPa。轴承。轴承B B处的许可转处的许可转角角 =0.5=0.5。根据刚度要求确。根据刚度要求确定轴的直径定轴的直径d d。B2 2)由刚度条件确定轴的直径:)由刚度条件确定轴的直径:材料力学2.2.提高梁刚度的措施提高梁刚度的措施1 1)选择合理的截面形状)选择合理的截面形状材料力学2 2)改善结构形式,减少弯矩数值)改善结构形式,减少弯矩数值改改变变支支座座形形式式材料力学2 2)改善结构形式,减少弯矩数值)改善结构形式,减少弯矩数值改改变变载载荷荷类类型型材料力学3 3)采用超静定结构)采用超静定结构材料力学1、明确挠曲线、挠度和转角的概念2、掌握计算梁变形的积分法和叠加法3、学会用变形比较法解简单超静定问题本章小结一、知识点一、知识点二、重点内容二、重点内容1、掌握计算梁变形的积分法和叠加法2、学会用变形比较法解简单超静定问题

    注意事项

    本文(《梁弯曲变形的计算》PPT课件.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开