欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    函数中因动点产生的相似三角形问题含答案.doc

    • 资源ID:53838217       资源大小:1.20MB        全文页数:11页
    • 资源格式: DOC        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    函数中因动点产生的相似三角形问题含答案.doc

    函数中因动点产生的相似三角形问题 例题 如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B。求抛物线的解析式;(用顶点式求得抛物线的解析式为)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得OBP与OAB相似?若存在,求出P点的坐标;若不存在,说明理由。例1题图图1图2分析:1.当给出四边形的两个顶点时应以两个顶点的连线为四边形的边和对角线来考虑问题以O、C、D、B四点为顶点的四边形为平行四边形要分类讨论:按OB为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 练习1、已知抛物线经过及原点(1)求抛物线的解析式(由一般式得抛物线的解析式为)(2)过点作平行于轴的直线交轴于点,在抛物线对称轴右侧且位于直线下方的抛物线上,任取一点,过点作直线平行于轴交轴于点,交直线于点,直线与直线及两坐标轴围成矩形是否存在点,使得与相似?若存在,求出点的坐标;若不存在,说明理由(3)如果符合(2)中的点在轴的上方,连结,矩形内的四个三角形之间存在怎样的关系?为什么?练习2、如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处。已知折叠,且。(1)判断与是否相似?请说明理由;(2)求直线CE与x轴交点P的坐标;(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由。Oxy练习2图CBED练习3、在平面直角坐标系中,已知二次函数的图象与轴交于两点(点在点的左边),与轴交于点,其顶点的横坐标为1,且过点和(1)求此二次函数的表达式;(由一般式得抛物线的解析式为)(2)若直线与线段交于点(不与点重合),则是否存在这样的直线,使得以为顶点的三角形与相似?若存在,求出该直线的函数表达式及点的坐标;若不存在,请说明理由;CBA练习4图PyyCxBA练习3图(3)若点是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角与的大小(不必证明),并写出此时点的横坐标的取值范围O练习4 (2008广东湛江市) 如图所示,已知抛物线与轴交于A、B两点,与轴交于点C(1)求A、B、C三点的坐标(2)过点A作APCB交抛物线于点P,求四边形ACBP的面积(3)在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似若存在,请求出M点的坐标;否则,请说明理由练习5、已知:如图,在平面直角坐标系中,是直角三角形,点的坐标分别为,(1)求过点的直线的函数表达式;点,(2)在轴上找一点,连接,使得与相似(不包括全等),并求点的坐标;(3)在(2)的条件下,如分别是和上的动点,连接,设,问是否存在这样的使得与相似,如存在,请求出的值;如不存在,请说明理由ACOBxy参考答案例题、解:由题意可设抛物线的解析式为抛物线过原点,.图1抛物线的解析式为,即 如图1,当OB为边即四边形OCDB是平行四边形时,CDOB,由得,B(4,0),OB4.D点的横坐标为6 将x6代入,得y3,D(6,3); 根据抛物线的对称性可知,在对称轴的左侧抛物线上存在点D,使得四边形ODCB是平行四边形,此时D点的坐标为(2,3), 当OB为对角线即四边形OCBD是平行四边形时,D点即为A点,此时D点的坐标为(2,1)如图2,由抛物线的对称性可知:AOAB,AOBABO.若BOP与AOB相似,必须有POBBOABPO 图2设OP交抛物线的对称轴于A点,显然A(2,1)直线OP的解析式为 由,得.P(6,3)过P作PEx轴,在RtBEP中,BE2,PE3,PB4.PBOB,BOPBPO,PBO与BAO不相似, 同理可说明在对称轴左边的抛物线上也不存在符合条件的P点.所以在该抛物线上不存在点P,使得BOP与AOB相似. 练习1、解:(1)由已知可得: 解之得,因而得,抛物线的解析式为:(2)存在设点的坐标为,则,要使,则有,即解之得,当时,即为点,所以得要使,则有,即解之得,当时,即为点,当时,所以得故存在两个点使得与相似点的坐标为(3)在中,因为所以当点的坐标为时,所以因此,都是直角三角形又在中,因为所以即有所以,又因为,所以练习2解:(1)与相似。Oxy图1CBED312A理由如下:由折叠知,又,。(2),设AE=3t,则AD=4t。图2OxyCBEDPMGlNAF由勾股定理得DE=5t。由(1),得,。在中,解得t=1。OC=8,AE=3,点C的坐标为(0,8),点E的坐标为(10,3),设直线CE的解析式为y=kx+b,解得,则点P的坐标为(16,0)。(3)满足条件的直线l有2条:y=2x+12,y=2x12。如图2:准确画出两条直线。练习3解:(1)二次函数图象顶点的横坐标为1,且过点和,由解得此二次函数的表达式为(2)假设存在直线与线段交于点(不与点重合),使得以为顶点的三角形与相似在中,令,则由,解得yxBEAOCD令,得设过点的直线交于点,过点作轴于点点的坐标为,点的坐标为,点的坐标为要使或,已有,则只需,或成立若是,则有而在中,由勾股定理,得解得(负值舍去)点的坐标为将点的坐标代入中,求得满足条件的直线的函数表达式为或求出直线的函数表达式为,则与直线平行的直线的函数表达式为此时易知,再求出直线的函数表达式为联立求得点的坐标为若是,则有而在中,由勾股定理,得解得(负值舍去)点的坐标为将点的坐标代入中,求得满足条件的直线的函数表达式为存在直线或与线段交于点(不与点重合),使得以为顶点的三角形与相似,且点的坐标分别为或(3)设过点的直线与该二次函数的图象交于点将点的坐标代入中,求得此直线的函数表达式为设点的坐标为,并代入,得解得(不合题意,舍去)xBEAOCP·点的坐标为此时,锐角又二次函数的对称轴为,点关于对称轴对称的点的坐标为当时,锐角;当时,锐角;当时,锐角练习四图1CPByA解:(1)令,得 解得令,得 A B C (2)OA=OB=OC= BAC=ACO=BCO=APCB, PAB=过点P作PE轴于E,则APE为等腰直角三角形令OE=,则PE= P点P在抛物线上 解得,(不合题意,舍去)PE=四边形ACBP的面积=ABOC+ABPE=(3) 假设存在PAB=BAC = PAACMG轴于点G, MGA=PAC =在RtAOC中,OA=OC= AC=在RtPAE中,AE=PE= AP= 设M点的横坐标为,则M 点M在轴左侧时,则GM图2CByPA() 当AMG PCA时,有=AG=,MG=即 解得(舍去) (舍去)() 当MAG PCA时有=即 解得:(舍去) GM图3CByPAM 点M在轴右侧时,则 () 当AMG PCA时有=AG=,MG= 解得(舍去) M () 当MAGPCA时有= 即 解得:(舍去) M存在点M,使以A、M、G三点为顶点的三角形与PCA相似M点的坐标为,练习5、解:(1)点,点坐标为设过点的直线的函数表达式为,由 得,图1直线的函数表达式为(2)如图1,过点作,交轴于点,在和中, ,点为所求又,(3)这样的存在在中,由勾股定理得如图1,当时,图2则,解得如图2,当时,则,解得

    注意事项

    本文(函数中因动点产生的相似三角形问题含答案.doc)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开